Skip to main content Accessibility help

Fabrication and characterization of superelastic Ti–Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications

  • Yuanhuai He (a1), Yuqin Zhang (a2), Yehua Jiang (a1) and Rong Zhou (a1)


A superelastic Ti–40Nb alloy enhanced with Cu element (0, 2.5, 5, 7.5, and 10 wt%) was synthesized by a spark plasma sintering method to obtain biomaterials with an antimicrobial effect. The microstructure results showed that β phase was the main phase in (Ti–40Nb)–Cu alloys while Ti2Cu was synthesized with the Cu addition above 5 wt%. (Ti–40Nb)–Cu alloys exhibited high compressive strength over 1693.08 MPa, high yield strength of 1140.26–1619.14 MPa, low elastic modulus in the range of 43.91–58.01 GPa, low elastic energy (14.81–24.73 MJ/m3), and together with large plastic strain over 18.5%. High concentration of Cu ion released steadily from alloys in early 7 days, then the released concentration of Cu ion showed long-lasting and moderate. Comparing with the Ti–40Nb alloy, high antimicrobial activity was pronounced on (Ti–40Nb)–Cu alloys, and (Ti–40Nb)–Cu alloys showed more inhibitory activity against bacteria (E. coli and S. aureus) than fungi (C. albicans). Cu contents in alloys influenced the Cu ion release, which in turn affected the antimicrobial activity. As a good combination of low elastic modulus, high mechanical properties, good elastic energy, and excellent antimicrobial performance, (Ti–40Nb)–Cu alloys offer potential advantages to prevent stress shielding and exhibit an excellent antimicrobial property for hard tissue replacements.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Terry M. Tritt



Hide All
1. Chen, Q.Z. and Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng., R 87, 157 (2015).
2. Hao, Y.L., Li, S.J., Sun, S.Y., Zheng, C.Y., and Yang, R.: Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 3, 277286 (2007).
3. Baker, H., Okamoto, H., and Henry, S.D.: ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International Materials Park, Ohio, 1992).
4. Fu, J., Yamamoto, A., Kim, H.Y., Hosoda, H., and Miyazaki, S.: Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomater. 17, 5667 (2015).
5. Miyazaki, S., Kim, H.Y., and Hosoda, H.: Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater. Sci. Eng., A 438, 1824 (2006).
6. Harris, W.H. and Sledge, C.B.: Total hip and total knee replacement. N. Engl. J. Med. 323, 725731 (1990).
7. Heidenau, F., Mittelmeier, W., Detsch, R., Haenle, M., Stenzel, F., Ziegler, G., and Gollwitzer, H.A.: A novel antibacterial titania coating: Metal ion toxicity and in vitro surface colonization. J. Mater. Sci.: Mater. Med. 16, 883888 (2005).
8. Waizy, H., Seitz, J.M., Reifenrath, J., Weizbauer, A., Bach, F.W., Meyer-Lindenberg, A., Denkena, B., and Windhagen, H.: Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 48, 3950 (2013).
9. Ding, Y.F., Wen, C., Hodgson, P., and Li, Y.: Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J. Mater. Chem. B 2, 19121933 (2014).
10. Abdelmageed, A.B. and Oehme, F.W.: A review on biochemical roles, toxicity and interactions of zinc, copper and iron: IV. Interactions. Vet. Hum. Toxicol. 32, 456458 (1990).
11. Morakabati, M., Kheirandish, S., Aboutalebi, M., Taheri, A.K., and Abbasi, S.M.: The effect of Cu addition on the hot deformation behavior of NiTi shape memory alloys. J. Alloys Compd. 499, 5762 (2010).
12. Zhang, E., Zheng, L., Liu, J., Bai, B., and Liu, C.: Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater. Sci. Eng., C 46, 148157 (2015).
13. Zhang, E., Li, F., Wang, H., Liu, J., Wang, C., and Li, M.: A new antibacterial titanium–copper sintered alloy: Preparation and antibacterial property. Mater. Sci. Eng., C 33, 42804287 (2013).
14. Holden, F.C., Watts, A.A., Ogden, H.R., and Jaffee, R.I.: Heat treatment and mechanical properties of Ti–Cu alloys. Trans. AIME 7, 117125 (1955).
15. Ren, G., Hu, D., Cheng, E.W.C., Vargas-Reus, M.A., Reip, P., and Allaker, R.P.: Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587590 (2009).
16. Calin, M., Helth, A., Gutierrez, J.J., Bönisch, M., Brackmann, V., and Giebeler, L.: Elastic softening of beta-type Ti–Nb alloys by indium (In) additions. J. Mech. Behav. Biomed. Mater. 39, 162174 (2014).
17. Farooq, M.U., Khalid, F.A., Zaigham, H., and Abidi, I.H.: Superelastic behaviour of Ti–Nb–Al ternary shape memory alloys for biomedical applications. Mater. Lett. 121, 5861 (2014).
18. Lee, C.M., Ju, C.P., and Chern-Lin, J.H.: Structure–property relationship of cast Ti–Nb alloys. J. Oral Rehabil. 29, 314322 (2002).
19. Murray, J.L. and Baker, H.: Alloy Phase Diagrams (ASM International, Metals Park, Ohio, 1987); p. 180.
20. Otsuka, K. and Wayman, C.M.: Shape Memory Materials, 1st ed. (Cambridge University Press, Cambridge, 1999).
21. Hayama, A.O.F., Andrade, P.N., Cremasco, A., Contieri, R.J., Afonso, C.R.M., and Caram, R.: Effects of composition and heat treatment on the mechanical behavior of Ti–Cu alloys. Mater. Des. 55, 10061013 (2014).
22. Lee, H.J. and Aaronson, H.I.: Eutectoid decomposition mechanisms in hypoeutectoid Ti–X alloys. J. Mater. Sci. 23, 150160 (1988).
23. Zhang, D.C., Mao, Y.F., Li, Y.L., Li, J.J., Yuan, M., and Lin, J.G.: Effect of ternary alloying elements on microstructure and superelasticity of Ti–Nb alloys. Mater. Sci. Eng., A 559, 706710 (2013).
24. Hon, Y.H., Wang, J.Y., and Pan, Y.N.: Influence of hafnium content on mechanical behaviors of Ti–40Nb–xHf alloys. Mater. Lett. 58, 31823186 (2004).
25. Graft, W.H., Levinson, D.W., and Rostoker, W.: The influence of alloying on the elastic modulus of titanium alloys. ASM Trans. 49, 263279 (1957).
26. Fleischer, R.L., Gilmore, R.S., and Zabala, R.J.: Elastic moduli of polycrystalline, intermetallic compounds of titanium. J. Appl. Phys. 64, 29642967 (1988).
27. Yao, X., Sun, Q.Y., Xiao, L., and Sun, J.: Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments. J. Alloys Compd. 484, 196202 (2009).
28. Ozan, S., Lin, J., Li, Y., Ipek, R., and Wen, C.: Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomater. 20, 176187 (2015).
29. Zhan, Y., Li, C., and Jiang, W.: β-type Ti–10Mo–1.25Si–xZr biomaterials for applications in hard tissue replacements. Mater. Sci. Eng., C 32, 16641668 (2012).
30. Stranak, V., Wulff, H., Ksirova, P., Zietz, C., and Drache, S.: Ionized vapor deposition of antimicrobial Ti–Cu films with controlled copper release. Thin Solid Films 550, 389394 (2014).
31. World Health Organization: Trace Elements in Human Nutrition and Health (WHO, Geneva, 1996).
32. Shirai, T., Tsuchiya, H., Shimizu, T., Ohtani, K., Zen, Y., and Tomita, K.: Prevention of pin tract infection with titanium–copper alloys. J. Biomed. Mater. Res., Part B 91, 373380 (2009).
33. Liu, J., Li, F., Liu, C., Wang, H., Ren, B., Yang, K., and Zhang, E.: Effect of Cu content on antibacterial activity of titanium–copper sintered alloys. Mater. Sci. Eng., C 35, 392400 (2014).
34. Horton, D.J., Ha, H., Foster, L.L., Bindig, H.J., and Scully, J.R.: Tarnishing and Cu ion release in selected copper-base alloys: Implications towards antimicrobial functionality. Electrochim. Acta 169, 351366 (2015).
35. Thurman, R.B. and Gerba, C.P.: The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Crit. Rev. Environ. Control 18, 295315 (1989).
36. Samuni, A., Chevion, M., and Czapski, G.: Roles of copper and superoxide anion radicals in the radiation-induced inactivation of T7 bacteriophage. Radiat. Res. 99, 562572 (1984).
37. Yamamoto, A., Honma, R., and Sumita, M.: Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res. 39, 331340 (1998).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed