Skip to main content Accessibility help

Exothermic reactions in cold-rolled Ni/Al reactive multilayer foils

  • X. Qiu (a1), J. Graeter (a1), L. Kecskes (a2) and J. Wang (a3)


Exothermic reactions in cold-rolled Ni/Al reactive multilayer foils were investigated in this study. A two-stage reaction process was observed in the self-propagating reactions in the cold-rolled foils that were ignited by a point-source flame. Foils taken out of the flame after completing the first stage of the reaction process were compared to those allowed to complete both stages. Differences in the phase-evolution sequence from the two types of foils were studied by differential scanning calorimetry (DSC), using slow and controlled heating of the samples. Several exothermic peaks could be identified from the DSC thermograms for both types of foils. Using the DSC, both the as-cold-rolled and partially reacted foils were heated to each peak temperature to identify the reaction product associated with each peak. X-ray diffraction and scanning electron microscopy analyses showed that the first two peaks corresponded to the formation of Al3Ni, while the third peak corresponded to the formation of AlNi.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Ma, E., Thompson, C.V., Clevenger, L.A.Tu, K.N.: Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl. Phys. Lett. 57, 1262 1990
2Weihs, T.P.: Handbook of Thin Film Process Technology Institute of Physics Bristol, UK 1998 F7:1, F7:13
3Reiss, M.E., Esber, C.M., Van Heerden, D., Gavens, A.J., Williams, M.E.Weihs, T.P.: Self-propagating formation reactions in Nb/Si multilayers. Mater. Sci. Eng., A 261, 217 1999
4Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M.Weihs, T.P.: Joining of stainless-steel specimens with nanostructured Al/Ni foils. J. Appl. Phys. 95, 248 2004
5Wang, J., Besnoin, E., Knio, O.M.Weihs, T.P.: Effects of physical properties of components on reactive nanolayer joining. J. Appl. Phys. 97, 4307 2005
6Duckham, A., Spey, S.J., Wang, J., Reiss, M.E.Weihs, T.P.: Reactive nanostructured foil used as a heat source for joining titanium. J. Appl. Phys. 96, 2336 2004
7Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M., Knio, O.M., Powers, M., Whitener, M.Weihs, T.P.: Room-temperature soldering with nanostructured foils. Appl. Phys. Lett. 83, 3987 2003
8Swiston, A.J. Jr., Hufnagel, T.C.Weihs, T.P.: Joining bulk metallic glass using reactive multilayer foils. Scripta Mater. 48, 1575 2003
9Wang, J., Besnoin, E., Knio, O.M.Weihs, T.P.: Investigating the effect of applied pressure on reactive multilayer foil joining. Acta Mater. 52, 5265 2004
10Qiu, X.Wang, J.: Reactive multilayer foils for silicon wafer bonding in Advanced Electronic Packaging, edited by V.P. Atluri, S. Sharan, C-P. Wong, and D. Frear (Mater. Res. Soc. Symp. Proc.) 968 Warrendale, PA 2007 968-V02-06
11Ma, E., Thompson, C.V.Clevenger, L.A.: Nucleation and growth during reactions in multilayer Al/Ni films: The early stage of Al3Ni formation. J. Appl. Phys. 69, 2211 1991
12Barmak, K., Michaelsen, C.Lucadamo, G.: Reactive phase formation in sputter-deposited Ni/Al multilayer thin films. J. Mater. Res. 12, 133 1997
13Edelstein, A.S., Everett, R.K., Richardson, G.Y., Qadri, S.B., Altman, E.I., Foley, J.C.Perepezko, J.H.: Intermetallic phase formation during annealing of Al/Ni multilayers. J. Appl. Phys. 76, 7850 1994
14Blobaum, K.J., Van Heerden, D., Gavens, A.J.Weihs, T.P.: Al/Ni formation reactions: Characterization of the metastable Al9Ni2 phase and analysis of its formation. Acta Mater. 51, 3871 2003
15Sieber, H., Park, J.S., Weissmüller, J.Perepezko, H.: Structural evolution and phase formation in cold-rolled aluminum–nickel multilayers. Acta Mater. 49, 1139 2001
16Qiu, X.Wang, J.: Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils. Scripta Mater. 56, 1055 2007
17Battezzati, L., Pappalepore, P., Purbiano, F.Gallino, I.: Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing. Acta Mater. 47, 1901 1999
18Weihs, T.P.Reiss, M.: Method of making reactive multilayer foil and resulting product. U.S. Patent No. 6 534 194 (May 18) 2003
19Sauvage, X., Dinda, G.P.Wilde, G.: Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers. Scripta Mater. 56, 181 2007
20Mann, A.B., Gavens, A.J., Reiss, M.E., Van Heerden, D., Bao, G.Weihs, T.P.: Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J. Appl. Phys. 82, 1178 1997
21Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E.Weihs, T.P.: Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87, 1255 2000
22Coffey, K.R., Clevenger, L.A., Barmak, K., Rudman, D.A.Thompson, C.V.: Experimental evidence for nucleation during thin-film reactions. Appl. Phys. Lett. 55, 852 1989
23Pretorius, R., Vredenberg, A.M., Saris, Reus, R.: Prediction of phase formation sequence and phase stability in binary metal–aluminum thin-film systems using the effective heat of formation rule. J. Appl. Phys. 70, 3636 1991


Related content

Powered by UNSILO

Exothermic reactions in cold-rolled Ni/Al reactive multilayer foils

  • X. Qiu (a1), J. Graeter (a1), L. Kecskes (a2) and J. Wang (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.