Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T03:54:13.282Z Has data issue: false hasContentIssue false

Excess Li ions in a small graphite cluster

Published online by Cambridge University Press:  31 January 2011

M. Nakadaira
Affiliation:
Department of Electronics Engineering, University of Electro-Communications, Chofugaoka, Chofu, 182 Tokyo, Japan
R. Saito
Affiliation:
Department of Electronics Engineering, University of Electro-Communications, Chofugaoka, Chofu, 182 Tokyo, Japan
T. Kimura
Affiliation:
Department of Electronics Engineering, University of Electro-Communications, Chofugaoka, Chofu, 182 Tokyo, Japan
G. Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We calculate the optimized geometry and the corresponding electronic structure of Li ions doped in a small graphite cluster with dangling bonds or hydrogen terminations at the edge surrounding the cluster. The calculations imply both covalent and ionic bonds of Li ions to carbon atoms, which may be relevant to explaining the broad signal of the 7Li NMR Knight shift spectra. Li intercalation, in particular, is possible even at the hydrogen-terminated edges. Because of the finite size effect of the cluster, the ionicity of intercalated Li ions has a large distribution of values, ranging from positive values close to that in graphite intercalation compounds to even slightly negative values, depending on the bonding geometry. We propose that the cluster edge surface plays a special role in accommodating excess Li ions in the disordered graphite system.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

References

1.Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W., J. Phys. Chem. Solids 54, 1841 (1993).Google Scholar
2.Sato, K., Noguchi, M., Demachi, A., Oki, N., and Endo, M., Science 264, 556 (1994).CrossRefGoogle Scholar
3.Tanaka, K., Yata, S., and Yamabe, T., Synthetic Metals 71, 2147 (1995).Google Scholar
4.Yata, S., Hato, Y., Kinoshita, H., Ando, N., Anekawa, A., Hashimoto, T., Yamaguchi, M., Tanaka, K., and Yamabe, T., Synthetic Metals 73, 273 (1995).CrossRefGoogle Scholar
5.Yata, S., Kinoshita, H., Komori, M., Ando, N., Kashiwamura, T., Harada, T., Tanaka, K., and Yamabe, T., Synthetic Metals 62, 153 (1994).Google Scholar
6.Dresselhaus, M. S. and Dresselhaus, G., Adv. Phys. 30, 139326 (1981).Google Scholar
7.Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature (London) 318, 162163 (1985).Google Scholar
8.Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).Google Scholar
9.Martin, T. P., Malinowski, N., Zimmermann, U., Näher, U., and Schaber, H., J. Chem. Phys. 99, 4210 (1993).Google Scholar
10.Kittel, C., in Introduction to Solid State Physics, 6th ed. (John Wiley and Sons, New York, 1986).Google Scholar
11.Stewart, J. J. P., Fujitsu Limited, Tokyo, Japan (1993); semiempirical quantum chemistry library.Google Scholar
12.Stewart, J. J. P., J. Comput. Chem. 10, 209 (1989).Google Scholar
13.Stewart, J. J. P. and Coolidge, M. B., J. Comp. Chem. 12, 1157 (1991).CrossRefGoogle Scholar
14.Matthews, M. J., Dresselhaus, M. S., Endo, M., Sasabe, Y., Takahashi, T., and Takeuchi, K., J. Mater. Res. 11, 3099 (1996).Google Scholar
15.Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 46, 1804 (1992).CrossRefGoogle Scholar
16.Fujita, M., Wakabayayashi, K., Nakada, K., and Kusakabe, K., J. Phys. Soc. Jpn. 65, 1920 (1996).Google Scholar
17.Fujita, M., Yoshida, M., and Nakada, K., Fullerene Sci. Technol. 4, 565 (1996).Google Scholar
18.Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 54, 17954 (1996).Google Scholar