Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T06:19:22.687Z Has data issue: false hasContentIssue false

EXAFS and RDF studies of TeO2–Li2O glasses

Published online by Cambridge University Press:  03 March 2011

Y. Shimizugawa
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba 305, Japan
T. Maeseto*
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba 305, Japan
S. Suehara
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba 305, Japan
S. Inoue
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba 305, Japan
A. Nukui
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba 305, Japan
*
a)Present address: Shinko Pantec Co. Ltd., Murotani 1-4-1, Nishi-Ku, Kobe 651-22, Japan.
Get access

Abstract

Local arrangements around Te atoms in TeO2-Li2O glasses with four different Li2O contents (15, 20, 25, and 30 mol %) are observed by Te K EXAFS spectroscopy and x-ray diffraction by making use of synchrotron radiation. EXAFS results based on the two-shell fitting method indicate that interatomic distances of Te-O in axial (ax) sites decrease from 0.208 to 0.197 nm with increasing Li2O contents, while distances between tellurium atom and oxygen atoms in equatorial (eq) sites change slightly from 0.190 to 0.188 nm. Total coordination numbers seem to decrease slightly with increasing Li2O contents. These results suggest the coordination states of tellurium atoms are changed from TeO4 trigonal bipyramids to TeO3+1 polyhedra and TeO3 trigonal pyramids. RDF results also suggest the change of coordination states of tellurium atoms. TeO3+1 polyhedra in glasses are considered to be connected at the vertices with Te-eq Oax-Te or Te-ax Oax-Te linkage as seen in crystalline α-Li2Te2O5.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brady, G. W., J. Chem. Phys. 24, 477 (1956).CrossRefGoogle Scholar
2Brady, G. W., J. Chem. Phys. 27, 300 (1957).CrossRefGoogle Scholar
3Mochida, N., Takahashi, K., Nakata, K., and Shibusawa, S., Yogyo-Kyokai-Shi 86, 316 (1978).CrossRefGoogle Scholar
4Neov, S., Kozhukharov, V., Gerasimova, I., Krezhov, K., and Sidzhimov, B., J. Phys. C12, 2475 (1979).Google Scholar
5Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M., J. Non-Cryst. Solids 144, 128 (1992).CrossRefGoogle Scholar
6Osaka, A., Jianrong, Q., Nanba, T., Tanaka, J., Miura, Y., and Yao, T., J. Non-Cryst. Solids 142, 81 (1992).CrossRefGoogle Scholar
7Sekiya, T., Mochida, N., Ohtsuka, A., and Soejima, A., J. Non-Cryst. Solids 151, 228 (1992).CrossRefGoogle Scholar
8Satow, Y., Asakura, K., and Kuroda, H., J. Phys. C20, 5027 (1987).Google Scholar
9Satow, Y. and Iitaka, Y., Rev. Sci. Instrum. 60, 2390 (1989).CrossRefGoogle Scholar
10Uno, R., Ozawa, H., Yamanaka, T., Morikawa, H., Ando, M., Ohsumi, K., Nukui, A., Yukino, K., and Kawasaki, T., Australian J. Phys. 41, 133 (1988).CrossRefGoogle Scholar
11Spieker, P., Ando, M., and Kamiya, N., Nucl. Instrum. Methods 222, 196 (1984).CrossRefGoogle Scholar
12Teo, B. K. and Lee, P. A., J. Am. Chem. Soc. 101, 2815 (1979).CrossRefGoogle Scholar
13Krough-Moe, J., Acta Crystallogr. 9, 951 (1956).CrossRefGoogle Scholar
14Norman, N., Acta Crystallogr. 10, 370 (1957).CrossRefGoogle Scholar
15International Tables for X-ray Crystallography (Kynoch Press, Birmingham, AL, 1974), Vol. 4, p. 99.Google Scholar
16Hadju, F., Acta Crystallogr. A27, 73 (1971).Google Scholar
17Palinkas, G., Acta Crystallogr. A29, 10 (1973).CrossRefGoogle Scholar
18Sasaki, S., KEK Report 88-14 (Natl. Lab. High Energy Physics, Tsukuba, Japan, 1989).Google Scholar
19Lindqvist, O., Acta Chem. Scand. 22, 977 (1968).CrossRefGoogle Scholar
20Cachau-Herreillat, D., Norbert, A., Maurin, M., and Philippot, E., J. Solid State Chem. 37, 352 (1981).CrossRefGoogle Scholar
21Folger, V. F., Z. Anorg. Allg. Chem. 411, 103 (1975).CrossRefGoogle Scholar
22Dimitriev, Y., Bart, J. C. J., Dimitrov, V., and Arnaudov, M., Z. Anorg. Allg. Chem. 479, 229 (1981).CrossRefGoogle Scholar
23Dimitriev, Y., Dimitrov, V., Gatev, E., Kashchieva, E., and Petkov, H., J. Non-Cryst. Solids 95&96, 937 (1987).CrossRefGoogle Scholar
24Nukui, A., Shimizugawa, Y., Inoue, S., Ozawa, H., Uno, R., Maeseto, T., and Ohsumi, K., Proc. of the 16th Int. Congr. on Glass (Spanish Ceram. Glass Soc, Madrid, Spain, 1992), Vol. 3, p. 271.Google Scholar
25Balaya, P. and Sunandana, C. S., J. Non-Cryst. Solids 162, 253 (1993).CrossRefGoogle Scholar