Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T01:12:14.768Z Has data issue: false hasContentIssue false

Evolution of phases and microstructure in optical waveguides of lithium niobate

Published online by Cambridge University Press:  03 March 2011

M.A. McCoy
Affiliation:
BP Research, Cleveland, Ohio 44128
S.A. Dregia
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
W.E. Lee
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield, England
Get access

Abstract

The microstructural development of Ti: LiNbO3 optical waveguides, as a function of annealing time and temperature, was studied by x-ray diffraction, scanning and transmission electron microscopy, and Auger electron spectroscopy. The microstructure evolves in three major stages: oxidation, precipitation and abnormal grain growth, and interdiffusion. The deposited Ti film is oxidized at low temperatures through a series of intermediate TiOx phases until complete oxidation to rutile TiO2 occurs at ∼500 °C. At intermediate temperatures, 500-800 °C, epitaxial precipitates of LiNb3O8 are formed at the rutile/LiNbO3 interface. At this stage abnormal grain growth occurs in the rutile film, causing multivariant epitaxy where all of the grains have a single orientation relationship to the substrate. Subsequent interdiffusion between TiO2 and LiNb3O8 produces a solid solution with the rutile structure which, at these temperatures, appears to coexist in equilibrium with the underlying lithium niobate substrate. This rutile solid solution serves as the source of Ti in the final stage of interdiffusion, which occurs only at higher temperatures (≳ 1000 °C), and leads to consumption of the rutile layer by the substrate. Structural models are discussed for epitaxial grain growth and interdiffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schmidt, R. V. and Kaminov, I. P., Appl. Phys. Lett. 25, 458 (1974).CrossRefGoogle Scholar
2Becker, R. A., Mater. Res. Bull. XIII, 21 (1988).CrossRefGoogle Scholar
3Forhouhar, S., Betts, G. E., and Chang, W. S., Appl. Phys. Lett. 45, 207 (1984).CrossRefGoogle Scholar
4Canali, C., Carnera, A., Celotti, G., Delia Mea, G., and Mazzoldi, P., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Crawford, J. H. Jr., Chen, Y., and Sibley, W. A. (Mater. Res. Soc. Symp. Proc. 24, Elsevier Science Publishing, New York, 1984), p. 459.Google Scholar
5Read, P. M., Speakman, S. P., Hudson, M. D., and Considine, L., Nucl. Instrum. Methods Phys. Res. B15, 398 (1986).CrossRefGoogle Scholar
6Armenise, M. N., Canali, C., De Sario, M., Carnera, A., Mazzoldi, P., and Celotti, G., J. Appl. Phys. 54, 62 (1983).CrossRefGoogle Scholar
7Canali, C., Armenise, M. N., De Sario, M., Carnera, A., Mazzoldi, P., and Celotti, G., in “Processing of Guided Wave Optoelectronic Materials,” SPIE Proceedings, 460 (SPIE, 1984), p. 34.Google Scholar
8De Sario, M., Armenise, M. N., Canali, C., Carnera, A., Mazzoldi, P., and Celotti, G., J. Appl. Phys. 57, 1482 (1985).CrossRefGoogle Scholar
9Lundberg, M., Acta Chem. Scand. 25, 3337 (1971).CrossRefGoogle Scholar
10Svaasand, L. O., Eriksrud, M., Nakken, G., and Grande, A. P., J. Cryst. Growth 22, 230 (1974).CrossRefGoogle Scholar
11McCoy, M. A., Dregia, S. A., and Lee, W. E., J. Mater. Res. 9, 2029 (1994).CrossRefGoogle Scholar
12Esdaile, R. J., J. Appl. Phys. 58, 1070 (1985).CrossRefGoogle Scholar
13Holmes, R. J. and Smyth, D. M., J. Appl. Phys. 55, 3531 (1984).CrossRefGoogle Scholar
14Rice, C. E. and Holmes, R. J., J. Appl. Phys. 60, 3836 (1986).CrossRefGoogle Scholar
15Vesuvius McDanel Co., Beaver Falls, PA.Google Scholar
16Lee, W. E., in “Integrated Optical Circuit Engineering IV, SPIE Proceedings, 704 (SPIE, 1986), p. 102.Google Scholar
17Bravman, J. C. and Sinclair, R., J. Electron. Microsc. Technique 1, 53 (1984).CrossRefGoogle Scholar
18JCPDS Powder Diffraction File.Google Scholar
19Birnie, D. P. III, J. Mater. Sci. 28, 302 (1993).CrossRefGoogle Scholar
20JCPDS Powder Diffraction File, 21–1276.Google Scholar
21Cahn, J. W. and Kalonji, G., Proc. Int. Conf. Solid-Solid Phase Trans., edited by Aaronson, H. I., Laughlin, D. E., Sekerka, R. F., and Wayman, C. M. (The Metall. Soc. of AIME, 1982), pp. 314.Google Scholar
22Mullins, W. W., Acta Metall. 6, 414 (1958).CrossRefGoogle Scholar
23Mullins, W. W., J. Appl. Phys. 28, 333 (1957).CrossRefGoogle Scholar
24Thompson, C. V., Annu. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
25Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 385 (1980).CrossRefGoogle Scholar
26Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 405 (1980).CrossRefGoogle Scholar
27Garcia, J. A., Villafuerte-Castrejon, M. E., Andrade, J., Valuenzuela, R., and West, A. R., Mater. Res. Bull. XIX, 649 (1984).CrossRefGoogle Scholar
28Gallagher, P. K. and O'Bryan, H. M. Jr., J. Am. Ceram. Soc. 71, C56 (1988).Google Scholar