Skip to main content Accessibility help

Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C

  • Shengya Ji (a1), Shuhua Liang (a2), Kexing Song (a3), Hongxia Li (a3) and Zhou Li (a4)...


The present investigation aims to explore the evolution of microstructure and mechanical properties in Zn–Cu–Ti alloys during severe hot-rolling deformation. Twin deformation and dynamic recrystallisation are two important deformation modes of Zn–Cu–Ti alloys during hot rolling at 300 °C. Twin deformation and dynamic recrystallisation (DRX) appear one after the other. They not only consume the deformation stored energy but also inhibit initiation and growth of cracks. The elongation rate of Zn–Cu–Ti alloys has a rising trend with the increase in hot-rolling deformation. It is mainly due to grain refinement caused by increasing the ratio of DRX and twin deformation. The tensile strength of Zn–Cu–Ti alloys is found to decrease with the increase in hot-rolling deformation. This is because the solid-solution strengthening effect of copper is weakened by more deformation-induced precipitation of ε phase (CuZn5). The solid-solution strengthening effect of copper plays an important role in the strengthening effect of Zn–Cu–Ti alloys.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Jürgen Eckert



Hide All
1. Fata, A., Faraji, G., Mashhadi, M.M., and Tavakkoli, V.: Hottensile deformation and fracture behavior of ultrafine-grained AZ31 magnesium alloy processed by severe plastic deformation. Mater. Sci. Eng., A 674, 9 (2016).
2. Du, F., Yadav, S., Moreno, C., Murthy, T.G., and Saldana, C.: Incipient straining in severe plastic deformation methods. J. Mater. Res. 29(5), 718 (2014).
3. Huang, W.J., Liu, Z.Y., Lin, M., Zhou, X.W., Zhao, L., Ning, A.L., and Zeng, S.M.: Reprecipitation behavior in Al–Cu binary alloy after severe plastic deformation-induced dissolution of θ′ particles. Mater. Sci. Eng., A 546, 26 (2012).
4. Li, T., Kent, D., Sha, G., Dargusch, M.S., and Cairney, J.M.: Precipitation of the α-phase in an ultrafine grained beta-titanium alloy processed by severe plastic deformation. Mater. Sci. Eng., A 605, 144 (2014).
5. Kaibyshev, R., Shipilova, K., Musin, F., and Motohashi, Y.: Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng., A 396(1–2), 341 (2005).
6. Yan, L.M., Shen, J., Li, J.P., Li, Z.B., and Tang, Z.L.: Dynamic recrystallization of 7055 aluminum alloy during hot deformation. Mater. Sci. Forum 650, 295 (2010).
7. Liu, J., Cui, Z., and Li, C.: Modelling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Comput. Mater. Sci. 41(3), 375 (2008).
8. Murty, S.V., Torizuka, S., Nagai, K., Kitai, T., and Kogo, Y.: Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scr. Mater. 53(6), 763 (2005).
9. Gobrecht, A., Bendoula, R., Roger, J.M., and Bellon-Maurel, V.: Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer–Lambert law absorbance of highly scattering materials. Anal. Chim. Acta 853(1), 486 (2015).
10. Pan, J.S.: Foundations of Materials Science (Tsinghua University Press, Bejing, 1998).
11. Hou, Z.S. and Lu, G.Z.: Principles of Metallography (Shanghai Science and Technology Press, Shanghai, 1995).
12. Gourdet, S. and Montheillet, F.: A model of continuous dynamic recrystallization. Acta Mater. 51(9), 2685 (2003).
13. Ning, Y.Q. and Yao, Z.K.: Recrystallization nucleation mechanism of FGH4096 powder metallugry superalloy. Acta Metall. Sin. 48(8), 1005 (2012).
14. Jiang, K. and Sun, S.J.: Research of dynamic recrystallization critical criterion and mechanism. Nonferrous Met. Process. 38(1), 25 (2010).
15. Serra, A. and Bacon, D.J.: Computer simulation of twinning dislocation in magnesium using a many-body potential. Philos. Mag. A 63(5), 1001 (1991).
16. Galindo-Nava, E.I. and Rivera-Díaz-Del-Castillo, P.E.J.: Grain size evolution during discontinuous dynamic recrystallization. Scr. Mater. 72–73(1), 1 (2014).
17. Momeni, A., Ebrahimi, G.R., Jahazi, M., and Bocher, P.: Microstructure evolution at the onset of discontinuous dynamic recrystallization: A physics-based model of subgrain critical size. Alloys Compd. 587(7), 199 (2014).
18. Wu, Z.X., Zhang, Y.W., and Srolovitz, D.J.: Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Mater. 57(15), 4508 (2009).
19. Zhu, Y.T., Wu, X.L., Liao, X.Z., Narayan, J., Kecskés, L.J., and Mathaudhu, S.N.: Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater. 59(2), 812 (2011).
20. Tu, J.: Deformation Twins and Twinning Mechanism of Hexagonal Close-Packed Met Under Dynamic Plastic Deformation (Chongqing University, Chongqing, 2013).
21. Belyakov, A., Miura, H., and Sakai, T.: Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Mater. Sci. Eng., A 255(1–2), 139 (1998).
22. Miura, H., Sakai, T., Hamaji, H., and Jonas, J.J.: Preferential nucleation of dynamic recrystallization at triple junctions. Scr. Mater. 50(1), 65 (2004).
23. Wang, Y.N. and Huang, J.C.: Review: Texture analysis in hexagonal materials. Mater. Chem. Phys. 81(1), 11 (2003).
24. Ulacia, I., Dudamell, N.V., Gálvez, F., Yi, S., Pérez-Prado, M.T., and Hurtado, I.: Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater. 58(8), 2988 (2010).
25. Yi, S.B., Davies, C.H.J., Brokmeier, H.G., Bolmaro, R.E., Kainer, K.U., and Homeyer, J.: Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Mater. 54(2), 549 (2006).
26. Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., and Higashi, K.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51(7), 2055 (2003).
27. Chen, J.R. and Li, C.J.: Solid State Phase Transition in Metals and Alloys (Metallurgical Industry Press, Bejing, 1997).
28. Li, J.: Study on the Microstructure Evolution and Precipitation Behaviors during Hot Charging Process for HSLA Steel (Chongqing University, Chongqing, 2013).
29. Shi, D.K.: Foundations of Materials Science (Machinery Industry Press, Bejing, 2003).
30. Liu, P.: Study of the Dislocation Dynamics in the Plastic Deformation (Hefei University of Technology, Hefei, 2010).
31. Wang, H.J., Fu, B., Xiang, L., and Chou, S.T.: Nucleation mechanism of precipitate of AlN in ferrite phase of Hi–B steel. J. Iron Steel Res. 27(10), 40 (2015).


Evolution of microstructure and mechanical properties in Zn–Cu–Ti alloy during severe hot rolling at 300 °C

  • Shengya Ji (a1), Shuhua Liang (a2), Kexing Song (a3), Hongxia Li (a3) and Zhou Li (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed