Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T20:18:50.626Z Has data issue: false hasContentIssue false

Evaluation of true interlamellar spacing from microstructural observations

Published online by Cambridge University Press:  31 January 2011

Teruyuki Ikeda
Affiliation:
Materials Science, California Institute of Technology, Pasadena, California 91125
Vilupanur A. Ravi
Affiliation:
Department of Chemical and Materials Engineering, California State Polytechnic University, Pomona, California 91768
G. Jeffrey Snyder*
Affiliation:
Materials Science, California Institute of Technology, Pasadena, California 91125
*
a)Address all correspondence to this author. e-mail: jsnyder@caltech.edu
Get access

Abstract

A method for evaluating true interlamellar spacing from micrographs is proposed for a multidomained lamellar structure. The microstructure of these materials is assumed to be composed of many domains with the lamellae aligned roughly parallel to each other within each domain and with the domains themselves randomly oriented relative to one another. An explicit expression for the distribution of apparent interlamellar spacing is derived assuming that the distribution of the true interlamellar spacing is Gaussian. The average interlamellar spacing is close to the peak interlamellar spacing observed in the distribution. The theoretical distributions are compared with experimental ones obtained by analyzing micrographs of PbTe–Sb2Te3 lamellar composites.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bansal, V.: A procedure to determine true lamellar dendrite spacing. J. Mater. Sci. Lett. 8, 451 1989CrossRefGoogle Scholar
2Pellissier, G.E., Hawkes, M.F., Johnson, W.A.Mehl, R.F.: The interlamellar spacing of pearlite. Trans. ASM 30, 1049 1942Google Scholar
3Roósz, A., Gácsi, Z.Baan, M.K.: A simple method for determining the true interlamellar spacing. Metallogr. 13, 299 1980CrossRefGoogle Scholar
4Voort, G.F. VanderRoósz, A.: Measurement of the interlamellar spacing of pearlite. Metallogr. 17, 1 1984CrossRefGoogle Scholar
5Crarski, A.Rýs, J.: Quantitative analysis of lamellar structure. Prace Komisji Metalurgiczno-Odlewniczej, Metallurgia 35, 35 1988Google Scholar
6Cahn, J.W.Fullman, R.L.: On the use of lineal analysis for obtaining particle size distribution functions in opaque samples. Trans. AIME 206, 610 1956Google Scholar
7Ikeda, T., Collins, L.A., Ravi, V.A., Gascoin, F.S., Haile, S.M.Snyder, G.J.: Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem. Mater. 19, 763 2007CrossRefGoogle Scholar
8Evans, A.G.Langdon, T.G.: Structural ceramics. Prog. Mater. Sci. 21, 171 1976CrossRefGoogle Scholar