Skip to main content Accessibility help

Eu3+, Bi3+ codoped Lu2O3 nanopowders: Synthesis and luminescent properties

  • Angel Morales Ramírez (a1), Margarita García Hernández (a2), Jonathan Yepez Ávila (a3), Antonieta García Murillo (a4), Felipe Carrillo Romo (a4), Elder de la Rosa (a5), Vicente Garibay Febles (a6) and Joan Reyes Miranda (a7)...


Eu3+, Bi3+ codoped Lu2O3 powders (Eu = 2.5 at.%, Bi = 0–3.0 at.%) were prepared using the sol–gel method. Fourier transform infrared spectroscopy, x-ray diffraction, and excitation and emission spectra were carried out to characterize the synthesis, structure, and luminescent properties. The excitation spectra show a strong peak at 350–390 nm, corresponding to the Bi3+1S03P1 transition, and the emission spectra present the emission from 5D07FJ (J = 0, 1, 2, 3, 4) level of Eu3+. The intensity of the reddish emission at 612 nm was monitored as a function of the Bi3+ content and showed a light yield increment of ≈400% compared to a monodoped sample at 1.0% at. Bi3+, produced by an energy transfer process from Bi3+ to Eu3+. This was a consequence of the overlapping of the Bi3+3P11S0 emission with the f–f Eu3+ transitions.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Park, J.K., Park, S.M., Kim, C.H., Park, H.D., and Choi, S.Y.: Photoluminescence properties of the Eu3+ in La2O3. J. Mater. Sci. Lett. 20, 2231 (2001).
2.Volanti, D.P., Rosa, I.L.V., Paris, E.C., Paskocimas, C.A., Pizani, P.S., Varela, P.S., and Longo, E.: The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Opt. Mater. 3, 995 (2009).
3.Badalawa, W., Matsui, H., Osone, T., Hasuike, N., Harima, H., and Tabata, H.: Correlation between structural and luminescent properties of Eu3+-doped ZnO epitaxial layers. J. Appl. Phys. 109, 053502 (2011).
4.Sun, X., Li, B., Song, L., Gong, J., and Zhang, L.: Electrospinning preparation and photophysical properties of one-dimensional (1D) composite nanofibers doped with erbium(III) complexes. J. Lumin. 130, 1343 (2010).
5.Guo, H., Yin, M., Dong, N., Xu, M., Lou, L., and Zhang, W.: Effect of heat-treatment temperature on the luminescent properties of Lu2O3:Eu film prepared by Pechini sol–gel method. Appl. Surf. Sci. 243, 245 (2005).
6.Zhang, H., Chen, J., and Guo, H.: Electrospinning synthesis and luminescent properties of Lu2O3:Eu3+ nanofibers. J. Rare Earths 28, 232 (2010).
7.Trojan-Piegza, J. and Zych, E.: Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres. J. Phys. Chem. C 114, 4215 (2010).
8.Topping, S.G. and Sarin, V.K.: Cvd Lu2O3:Eu coatings for advanced scintillators. Int. J. Refract. Met. Hard Mater 27, 498 (2009).
9.Zych, E., Hrreniak, D., and Strek, W.: Spectroscopic properties of Lu2O3/Eu3+ nanocrystalline powders and sintered ceramics. J. Phys. Chem. B 106, 3805 (2002).
10.Boyer, J.C., Vetrone, F., Capobianco, J.A., Speghini, A., and Bettinnelli, M.: Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3. J. Phys. Chem. B 108, 20137 (2004).
11.Brecher, C., Bartram, R.H., and Lempicki, A.: Hole traps in Lu2O3:Eu ceramic scintillators. I. Persistent afterglow. J. Lumin. 106, 159 (2004).
12.Wu, X., Liang, Y., Chen, R., Liu, M., and Li, Y.: Preparation and photoluminescence properties of Y2O3:Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes. J. Mater. 46, 5581 (2011).
13.Cao, F., Tian, Y., Chen, Y., Xiao, L., Liu, Y., and Li, L.: Preparation and luminescent properties of novel red phosphors for white-light emitting diodes (W-LEDs) application. Mater. Sci. Semicond. Process. 12, 94 (2009).
14.Liu, Y., Yang, Y., Qian, G., Wang, Z., and Wang, M.: Energy transfer processes from Tb3+ to Eu3+ in ternary chelate doped in gel glasses via in situ technique. Mater. Sci. Eng., B 137, 74 (2007).
15.Kang, F., Hu, Y., Wu, H., Ju, G., Mu, Z., and Li, N.: Luminescence investigation of Eu3+-Bi3+ co-doped CaMoO4 phosphor. J. Rare Earths 29, 837 (2011).
16.Zhilong, W., Yuhua, W., Jiachi, Z., and Yanghua, L.: The photoluminescence properties of Eu3+, Bi3+ co-doped yttrium oxysulfide phosphor under vacuum ultraviolet excitation. Mater. Res. Bull. 44, 1183 (2009).
17.Park, W.J., Jung, M.K., and Yoon, D.H.: Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation. Sens. Actuators, B 126, 324 (2007).
18.Takeshita, S., Isobe, T., Sawayama, T., and Niikura, S.: Low-temperature wet chemical precipitation of YVO4:Bi3+, Eu3+ nanophosphors via citrate precursors. Prog. Cryst. Growth Charact. Mater. 57, 127 (2011).
19.Wei, X.T., Chen, Y.H., Cheng, H.R., Yin, M., and Xu, W.: Photoluminescence characteristics and energy transfer between Bi3+ and Eu3+ in Gd2O3: Eu3+, Bi3+ nanophosphors. Appl. Phys. B 99, 763 (2010).
20.Strel’tsov, A.V., Dmitrienko, V.P., Akmaeva, T.A., Kudryavstev, S.V., Dmitrienko, A.O., and Razumov, K.A.: The influence of activation of Y2O3 polycrystalline matrices by Bi3+ ions on the luminescence of Y2O3:Eu3+. Inorg. Mater. 45, 889 (2009).
21.Chan, T.S., Kang, C.C., Liu, R.S., Chen, L., Liu, X.N., Ding, J.J., Bao, J., and Gao, C.: Combinatorial study of the optimization of Y2O3:Bi, Eu red phosphors. J. Comb. Chem. 9, 343 (2007).
22.Neeraj, S., Kijima, N., and Cheetham, A.K.: Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln=Y, Gd). Solid State Commun. 131, 65 (2004).
23.Brusatin, G., Giustina, G.D., Guglielmi, M., Casalbomi, M., Prosposito, P., Schutzmann, S., and Roma, G.: Direct pattern of photocurable glycidoxypropyltrimethoxysilane based sol–gel hybrid waveguides for photonic applications. Mater. Sci. Eng. 27, 1022 (2007).
24.Daldosso, M., Sokolnicki, J., Kepinski, L., Legendziewicz, J., Speghini, A., and Bettinelli, M.: Preparation and optical properties of nanocrystalline Lu2O3:Eu3+ phosphors. J. Lumin. 122123, 858 (2007).
25.Chen, Q., Shi, Y., Li, A.. Wang, S., Chen, J., and Shi, J.: A novel co-precipitation synthesis of a new phosphor Lu2O3:Eu3+. J. Eur. Ceram. Soc. 27, 1941 (2007).
26.Nedelec, J.N.: Sol-gel processing of nanostructured inorganic scintillating materials. Nanomaterials 1, 1 (2007).
27.Hreniak, D., Zych, E., Kepinsky, L., and Strek, W.: Structural and spectroscopic studies of Lu2O3/Eu3+ nanocrystallites embedded in SiO2 sol–gel ceramics. J. Phys. Chem. Sol. 64, 111 (2003).
28.Jung, Y. and Jun, L.: Sol-gel synthesis of nanocrystalline Yb3+∕Ho3+-doped Lu2O3 as an efficient green phosphor. J. Electrochem. Soc. 157, K273 (2010).
29.Ksapabutr, B., Gulari, E., and Wongkasemjit, S.: One-pot synthesis and characterization of novel sodium tris(glyco zirconate) and cerium glycolate precursors and their pyrolysis. Mater. Chem. Phys. 83, 34 (2004).
30.Chi, Y. and Chuang, S.: Infrared and TPD studies of nitrates adsorbed on Tb4O7, La2O3, BaO, and MgO/γ-Al2O3. J. Phys. Chem. B 104, 4673 (2000).
31.McDevitt, N.T. and Baun, W.L.: Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim. Acta 20, 799 (1964).
32.Zhang, H., Yang, Q., Lu, S., and Shi, Z.: Structural and spectroscopic characterization of Yb3+ doped Lu2O3 transparent ceramics. Opt. Mater. 34, 969 (2012).
33.Wang, N.L., Zhang, X.Y., and Wang, P.H.: Fabrication and spectroscopic characterization of Er3+:Lu2O3 transparent ceramics. Mater. Lett. 94, 5 (2013).
34.Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading MA, 1978), p. 99.
35.Liu, X.J., Li, H.L., Xie, R.J., Hirosaki, N., Xu, X., and Huang, L.P.: Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors. J. Lumin. 127, 469 (2007).
36.Wang, Z., Zhang, W., Lin, L.. Baogui, Y., Yibing, Y., and Min, Y.: Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors. Opt. Mater. 30, 1484 (2008).
37.Takeshita, S., Isoha, T., Sawayama, T., and Nikura, S.: Effects of the homogeneous Bi3+ doping process on photoluminescence properties of YVO4:Bi3+, Eu3+ nanophosphor. J. Lumin. 129, 1067 (2009).
38.Real, F., Vallet, V., Flament, J.P., and Schamps, J.: Ab initio embedded cluster study of the excitation spectrum and Stokes shifts of Bi3+-doped Y2O3. J. Chem. Phys. 127, 104705 (2007).
39.Jacobsohn, L.G., Blair, M.W., Tornga, S.C., Brown, L.O., Bennett, B.L., and Muenchansen, R.E.: Y2O3:Bi nanophosphor: Solution combustion synthesis, structure, and luminescence. J. Appl. Phys. 104, 124303 (2008).
40.Dhananjay, N., Nagabhushana, H., Nagabhushana, B.M., Sharma, S.C., Rudraswamy, B., Suriyamurthy, N., Shivakumara, C., and Chakradhar, R.P.S.: Synthesis, characterization, thermo- and photoluminescence properties of Bi3+ co-doped Gd2O3:Eu3+ nanophosphors. Appl. Phys. B 170, 503 (2012).
41.Yulia, V., Yermolayeva, V., Tolmachev, A.V., Dobrotvorskaya, M.V., and Vovk, O.M.: Preparation and structural properties of Lu2O3:Eu3+ submicrometer spherical phosphors. J. Alloys Compd. 509, 5320 (2011).
42.Phaomei, G., Singh, W.R., Singh, N.S., and Ningthoujam, R.S.: Luminescence properties of Ce3+ co-activated LaPO4:Dy3+ nanorods prepared in different solvents and tunable blue to white light emission from Eu3+ co-activated LaPO4:Dy3+, Ce3+. J. Lumin. 34, 649 (2013).


Eu3+, Bi3+ codoped Lu2O3 nanopowders: Synthesis and luminescent properties

  • Angel Morales Ramírez (a1), Margarita García Hernández (a2), Jonathan Yepez Ávila (a3), Antonieta García Murillo (a4), Felipe Carrillo Romo (a4), Elder de la Rosa (a5), Vicente Garibay Febles (a6) and Joan Reyes Miranda (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed