Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T11:09:28.609Z Has data issue: false hasContentIssue false

Epitaxy and defects in laser-irradiated, single-crystal bismuth

Published online by Cambridge University Press:  31 January 2011

Aubrey L. Helms Jr.
Affiliation:
AT & T Engineering Research Center, P.O. Box 900, Princeton, New Jersey 08540
Clifton W. Draper
Affiliation:
AT & T Engineering Research Center, P.O. Box 900, Princeton, New Jersey 08540
Dale C. Jacobson
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
John M. Poate
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Steven L. Bernasek
Affiliation:
Department of Chemistry, Frick Chemical Laboratory, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

The (0001), (1010), and (2110) faces of Bi have been pulsed laser irradiated at 0.5–0.8 J/cm2 with a Q-switched ruby laser. Nomarski interference contrast microscopy, channeling, and selective chemical etching have been used to investigate the response of the material to the laser irradiation. The response of Bi is shown to be strongly orientation dependent. The χmin and half-angle for the Bi (0001) surface have been measured and compared to theoretical values. The Bi(0001) surface has been shown to regrow epitaxially without an increase in the disorder. In contrast, the epitaxial regrowth of the Bi(1010) and Bi(2110) surfaces show a marked increase in disorder after irradiation. The levels of damage show a strong correlation to the critical resolved shear stress characteristics in the particular crystallographic orientation studied.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Buene, L., Kaufmann, E. N., Preece, C. M., and Draper, C. W., in Laser and Electron-beam Solid Interactions and Materials Processing, edited by Gibbons, J. F., Hess, L. D., and Sigmon, T. W. (Elsevier North-Holland, New York, 1981), pp. 591597.Google Scholar
2Donohue, J., The Structure of the Elements (Wiley, New York, 1974), pp. 311316.Google Scholar
3Ho, C., Powell, R., and Liley, P., “Thermal Conductivity of the Elements: A Comprehensive Review,” J. Phys. Chem. Ref. Data 3, Suppl. 1, 7993 (1974).Google Scholar
4Helms, A. L. Jr , Draper, C. W., Jacobson, D. C., Poate, J. M., and Bernasek, S. L., Mater. Res. Soc. Symp. Proe. 35, 439 (1985).CrossRefGoogle Scholar
5Helms, A. L. Jr , Ph. D. thesis, Princeton University, 1986.Google Scholar
6Garno, J., AT&T Bell Laboratories (private communication).Google Scholar
7Cullis, A. G., Webber, H. C., and Bailey, P., J. Phys. E 12, 688 (1979).Google Scholar
8Rimini, E., in Materials Characterization Using ion Beams, edited by Thomas, J. P. and Cachard, A. (Plenum, New York, 1978), pp 455481.CrossRefGoogle Scholar
9Lowell, L. C., Wernick, J. H., J. Appl. Phys. 30, 234 (1959).Google Scholar
10Appleton, B. R. and Foti, G., in Ion Beam Handbook for Materials Analysis, edited by Mayer, J. W. and Rimini, E. (Academic, New York, 1977), pp. 67107.CrossRefGoogle Scholar
11Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).CrossRefGoogle Scholar
12Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M., and Baeri, P., Phys. Rev. Lett. 49, 219 (1982).CrossRefGoogle Scholar
13Buene, L., Poate, J. M., Jacobson, D. C., Draper, C. W., and Hirvonen, J. K., Appl. Phys. Lett. 37, 385 (1980).CrossRefGoogle Scholar
14Haessner, F. and Seitz, W., J. Mater. Sci. 6, 16 (1971).CrossRefGoogle Scholar
15Porteus, J. O., Soileau, M. J., and Fountain, C. W., Appl. Phys. Lett. 29, 156 (1976).CrossRefGoogle Scholar
16Marrs, C. D., Faith, W. N., Dancy, J. H., and Porteus, J. O., Appl. Opt. 21(22), 4063 (1982).CrossRefGoogle Scholar
17Birchenall, C. E., Physical Metallurgy (McGraw-Hill, New York, 1959), Chap. 6.Google Scholar
18Musal, H. M. Jr , Symposium on Optical Materials for High Power Lasers, Boulder, Colorado (1979).Google Scholar
19Reed-Hill, R. E., Physical Metallurgy Principles (Van Nostrand, New York, 1964), pp. 95129.Google Scholar
20Otake, S., Namazue, H., and Matsuno, N., Jpn. J. Appl. Phys. 19, 433 (1980).CrossRefGoogle Scholar