Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T22:34:19.251Z Has data issue: false hasContentIssue false

Epitaxial growth of β–SiC on Si by low-temperature chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

M. Iqbal Chaudhry
Affiliation:
Department of Electrical and Computer Engineering, Clarkson University, Potsdam, New York 13699
Robert L. Wright
Affiliation:
Department of Electrical and Computer Engineering, Clarkson University, Potsdam, New York 13699
Get access

Abstract

In this paper we report the growth of β–SiC films on Si(100) substrates by low-temperature chemical vapor deposition. Single crystals of β–SiC are grown at temperatures as low as 1150 °C. Low-temperature growth β–SiC is achieved using a SiH4–C3H8–H2–Ar gas system. The growth rate of films grown at 1150 °C is 1 μm/h. Transmission electron microscopy and x-ray diffraction results indicate that the β-SiC films grown at and above 1150 °C are single crystals. Films grown at temperatures lower than 1150 °C are polycrystalline.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nieberding, W. C. and Anthony, J.Powell, IEEE Trans, on Industrial Electronics IE-29 (2), 103 (1982).CrossRefGoogle Scholar
2Parsons, J. D., Bunshah, R. F., and Stafsudd, O. M., Solid State Technol., 133 (November 1985).Google Scholar
3Sugii, T., Ito, T., Furumura, Y., Doki, M., Mieno, F., and Maeda, M., IEEE Elect. Device Lett. 9 (2), 87 (1988).CrossRefGoogle Scholar
4Fujiwara, Y., Sakuma, E., Misawa, S., Endo, K., and Yoshida, S., Appl. Phys. Lett. 49 (7), 388 (1986).CrossRefGoogle Scholar
5Nishino, S., Powell, J. A., and Will, H. A., Appl. Phys. Lett. 42 (5), 460 (1983).CrossRefGoogle Scholar
6Addamino, A. and Sprague, J. S., Appl. Phys. Lett. 44 (5), 525 (1984).CrossRefGoogle Scholar
7Liaw, P. and Davis, R. F., J. of Electrochem. Soc. 132 (3), 642 (1985).CrossRefGoogle Scholar
8Cheng, D. J., Shyy, W. J., Kuo, D. H., and Hon, M. H., J. of Electrochem. Soc. 134 (12), 3145 (1987).CrossRefGoogle Scholar
9Powell, J. A., Mastus, L. G., and Kuczmarski, M. A., J. of Electrochem. Soc. 134 (6), 1558 (1987).CrossRefGoogle Scholar
10Powell, J. A., Mastus, L. G., and Kuczmarski, M. A., Appl. Phys. Lett. 51 (11), 823 (1987).CrossRefGoogle Scholar
11Shigeta, Mitsuhiro, Nakanishi, Kenjii, Fujii, Yoshihisa, Furukawa, Katsuki, Hatano, Akitsugu, Uemoto, Atsuko, Suzuki, Akira, and Nakajima, Shigeo, Appl. Phys. Lett. 50 (23), 1684 (1987).CrossRefGoogle Scholar
12Kong, H. S., Glass, J. T., and Davis, R. F., J. Mater. Res. 4, 204214 (1989).CrossRefGoogle Scholar
13Nishino, S. and Saraie, J., in Amorphous and Crystalline Silicon Carbide II, edited by Rahman, M. M., Yang, C.Y-W., and Harris, G. L. (Springer-Verlag, 1989).Google Scholar
14Fundamental Studies and Device Development in Beta Silicon Carbide,” in the Semiannual Annual Progress Report of School of Engineering, North Carolina State University, Raleigh, NC, March 1, 1985-August 31, 1985.Google Scholar