Hostname: page-component-68945f75b7-qf55q Total loading time: 0 Render date: 2024-08-05T19:03:33.720Z Has data issue: false hasContentIssue false

Epitaxial growth of magnesia and spinel on sapphire during incongruent reduction in molten magnesium

Published online by Cambridge University Press:  31 January 2011

P. Kumar
Affiliation:
Department of Materials Science and Engineering, 477 Watts Hall, 116 West 19th Avenue, The Ohio State University, Columbus, OH 43210
S. A. Dregia
Affiliation:
Department of Materials Science and Engineering, 477 Watts Hall, 116 West 19th Avenue, The Ohio State University, Columbus, OH 43210
K. H. Sandhage
Affiliation:
Department of Materials Science and Engineering, 477 Watts Hall, 116 West 19th Avenue, The Ohio State University, Columbus, OH 43210
Get access

Abstract

The types and structures of oxide phases produced during the incongruent reduction of sapphire (single-crystal Al2O3) by molten magnesium were examined. Polished faces of sapphire were exposed to molten magnesium at 1000 °C for 100 h. Such exposure resulted in the formation of a continuous, epitaxial layer of spinel (MgAl2O4) on sapphire and a continuous, epitaxial layer of magnesia (MgO) on the spinel. X-ray pole figure analyses indicated that two variants of spinel and magnesia had formed in a manner consistent with the following orientation relationships:

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sandhage, K.H. and Yurek, G.J., J. Am. Ceram. Soc. 74, 1941 (1991).CrossRefGoogle Scholar
2.Sandhage, K.H. and Yurek, G.J., J. Am. Ceram. Soc. 73, 3633 (1990).CrossRefGoogle Scholar
3.Sandhage, K.H. and Yurek, G.J., J. Am. Ceram. Soc. 73, 3643 (1990).CrossRefGoogle Scholar
4.Sandhage, K.H. and Yurek, G.J., J. Am. Ceram. Soc. 71, 478 (1988).CrossRefGoogle Scholar
5.Cooper, A.R. Jr, and Kingery, W.D., J. Am. Ceram. Soc. 47, 37 (1964).CrossRefGoogle Scholar
6.Samaddar, B.N., Kingery, W.D., and Cooper, A.R. Jr, J. Am. Ceram. Soc. 47, 249 (1964).CrossRefGoogle Scholar
7.Oishi, Y., Cooper, A.R. Jr, and Kingery, W.D., J. Am. Ceram. Soc. 48, 88 (1965).CrossRefGoogle Scholar
8.Bates, J.L., J. Am. Ceram. Soc. 70, C55 (1987).CrossRefGoogle Scholar
9.Herzog, S.P., Scand. J. Metall. 5, 145 (1976).Google Scholar
10.Bonar, J.A., Kennedy, C.R., and Swaroop, R.B., Am. Ceram. Soc. Bull. 59, 473 (1980).Google Scholar
11.Yeremenko, V.N., Natanzon, Y.V., and Dybkov, V.I., J. Mater. Sci. 16, 1748 (1981).CrossRefGoogle Scholar
12.Turkdogan, E.T., Grieveson, P., and Darken, L.S., J. Phys. Chem. 67, 1647 (1963).CrossRefGoogle Scholar
13.Tedmon, C.S. Jr, J. Electrochem. Soc. 113, 766 (1966).CrossRefGoogle Scholar
14.Maloney, M.J. and McNallen, M.J., Metall. Trans. B 16, 751 (1985).CrossRefGoogle Scholar
15.Breslin, M.C., U.S. Patent No. 5 214 011 (1993).Google Scholar
16.Breslin, M.C., Ringnalda, J., Xu, L., Fuller, M., Seeger, J., Daehn, G.S., Otani, T., and Fraser, H.L., Mater. Sci. Eng. A 195, 113 (1995).CrossRefGoogle Scholar
17.Claussen, N., Garcia, D.E., and Janssen, R., J. Mater. Res. 11, 2884 (1996).CrossRefGoogle Scholar
18.Schicker, S., Garcia, D.E., Bruhn, J., Janssen, R., and Claussen, N., J. Am. Ceram. Soc. 80, 2294 (1997).CrossRefGoogle Scholar
19.Garcia, D.E., Schicker, S., Bruhn, J., Janssen, R., and Claussen, N., J. Am. Ceram. Soc. 80, 2248 (1997).CrossRefGoogle Scholar
20.Fahrenholtz, W.G., Ewsuk, K.G., Loehman, R.E., and Tomsia, A.P., Met. Mater. Trans. A 27, 2100 (1996).CrossRefGoogle Scholar
21.Ewsuk, K.G., Glass, S.J., Loehman, R.E., Tomsia, A.P., and Fahrenholtz, W.G., Met. Mater. Trans. A 27, 2122 (1996).CrossRefGoogle Scholar
22.Loehman, R.E., Ewsuk, K.G., and Tomsia, A.P., J. Am. Ceram. Soc. 79, 27 (1996).CrossRefGoogle Scholar
23.Fahrenholtz, W.G., Ewsuk, K.G., Ellerby, D.T., and Loehman, R.E., J. Am. Ceram. Soc. 79, 2497 (1996).CrossRefGoogle Scholar
24.Saiz, E., Tomsia, A.P., Loehman, R.E., Ewsuk, K.G., J. Euro. Ceram. Soc. 16, 275 (1996).CrossRefGoogle Scholar
25. Powder Diffraction File, Card Nos. 45–946 for MgO, 43–1484 for Al2O3, and 21–1152 for MgAl2O4, International Center for Diffraction Data, Newtown Square, PA.Google Scholar
26.Kumar, P. and Sandhage, K.H., U.S. Patent Application No. 60/083 534 (1998).Google Scholar
27.Kumar, P. and Sandhage, K.H., J. Mater. Sci. (1999, in press).Google Scholar
28.Rogers, K.A., Kumar, P., Citak, R., and Sandhage, K.H., J. Am. Ceram. Soc. 82, 757 (1999).CrossRefGoogle Scholar
29.Murray, J.L., Bull. Alloy Phase Diag. 3, 60 (1982).CrossRefGoogle Scholar
30.Barin, I., Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1989).Google Scholar
31.Rossi, R.C. and Fulrath, R.M., J. Am. Ceram. Soc. 46, 145 (1963).CrossRefGoogle Scholar
32.Carter, R.E., J. Am. Ceram. Soc. 44, 116 (1961).CrossRefGoogle Scholar
33.Koch, E. and Wagner, C., Z. Physik. Chem. B34, 317 (1936).CrossRefGoogle Scholar
34.Comer, J.J., Tombs, N.C., Fitzgerald, J.F., J. Am. Ceram. Soc. 49, 237 (1966).CrossRefGoogle Scholar
35.Takei, H., Mater. Res. Bull. 11, 1265 (1976).CrossRefGoogle Scholar
36.Binary Alloy Phase Diagrams, edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak (American Society for Metals, Metals Park, OH, 1986), Vols. 1 and 2, p. 147.Google Scholar
37.Cahn, J.W. and Kalonji, G., in Proceedings of the Int. Conf. on Solid-Solid Phase Transformations, edited by Aaronson, H.I., Laughlin, D.E., Sekerka, R.F., and Wayman, C.M. (Metall. Soc. of AIME, Warrendale, PA, 1982), p. 3.Google Scholar
38.Hing, P., J. Mater. Sci. 11, 1919 (1976).CrossRefGoogle Scholar
39.Artelt, P., Keram. Z. 45, 538 (1993).Google Scholar
40.Shubin, V.I. and Nikanorov, V.I., Ogneupory [2], 18 (1996).Google Scholar
41.Glazacheva, M.V., Cherepenov, A.M., Medvedovskii, E.Y., and Kharitonov, F.Y., Glass Ceram. 40, 158 (1983).CrossRefGoogle Scholar