Skip to main content Accessibility help

Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces

  • Youxing Chen (a1), Engang Fu (a2), Kaiyuan Yu (a3), Miao Song (a4), Yue Liu (a4), Yongqiang Wang (a5), Haiyan Wang (a6) and Xinghang Zhang (a7)...


Recent studies have shown that chemical immiscibility is important to achieve enhanced radiation tolerance in metallic multilayers as immiscible layer interfaces are more stable against radiation induced mixing than miscible interfaces. However, as most of these immiscible systems have incoherent interfaces, the influence of coherency on radiation resistance of immiscible systems remains poorly understood. Here, we report on radiation response of immiscible Cu/Fe multilayers, with individual layer thickness h varying from 0.75 to 100 nm, subjected to He ion irradiation. When interface is incoherent, the peak bubble density decreases with decreasing h and reaches a minimum when h is 5 nm. At even smaller h when interface is increasingly coherent, the peak bubble density increases again. However, void swelling in coherent multilayers with smaller h remains less than those in incoherent multilayers. Our study suggests that the coherent immiscible interface is also effective to alleviate radiation induced damage.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

Contributing Editor: Khalid Hattar



Hide All
1. Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer-Verlag, Berlin, Germany, 2007).
2. Reed, D.: A review of recent theoretical developments in the understanding of the migration of helium in metals and its interaction with lattice defects. Radiat. Eff. 31(3), 129 (1977).
3. Thomas, G.: Experimental studies of helium in metals. Radiat. Eff. 78(1–4), 37 (1983).
4. Lucas, A.A.: Helium in metals. Physica B+C 127(1–3), 225 (1984).
5. Han, W.Z., Demkowicz, M.J., Fu, E.G., Wang, Y.Q., and Misra, A.: Effect of grain boundary character on sink efficiency. Acta Mater. 60(18), 6341 (2012).
6. Yu, K.Y., Liu, Y., Sun, C., Wang, H., Shao, L., Fu, E.G., and Zhang, X.: Radiation damage in helium ion irradiated nanocrystalline Fe. J. Nucl. Mater. 425(1–3), 140 (2012).
7. Singh, B.N.: Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel. Philos. Mag. 29(1), 25 (1974).
8. Singh, B.N. and Foreman, A.J.E.: Calculated grain size-dependent vacancy supersaturation and its effect on void formation. Philos. Mag. 29(4), 847 (1974).
9. Yu, K.Y., Bufford, D., Sun, C., Liu, Y., Wang, H., Kirk, M., Li, M., and Zhang, X.: Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nat. Commun. 4, 1377 (2013).
10. Zhang, X., Fu, E.G., Misra, A., and Demkowicz, M.J.: Interface-enabled defect reduction in He ion irradiated metallic multilayers. JOM 62(12), 75 (2010).
11. Demkowicz, M.J., Misra, A., and Caro, A.: The role of interface structure in controlling high helium concentrations. Curr. Opin. Solid State Mater. Sci. 16(3), 101 (2012).
12. Misra, A., Demkowicz, M.J., Zhang, X., and Hoagland, R.G.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59(9), 62 (2007).
13. Zhernenkov, M., Jablin, M.S., Misra, A., Nastasi, M., Wang, Y., Demkowicz, M.J., Baldwin, J.K., and Majewski, J.: Trapping of implanted He at Cu/Nb interfaces measured by neutron reflectometry. Appl. Phys. Lett. 98(24), 241913 (2011).
14. Kashinath, A., Misra, A., and Demkowicz, M.: Stable storage of helium in nanoscale platelets at semicoherent interfaces. Phys. Rev. Lett. 110(8), 086101 (2013).
15. Bai, X-M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327(5973), 1631 (2010).
16. Chen, D., Wang, J., Chen, T., and Shao, L.: Defect annihilation at grain boundaries in alpha-Fe. Sci. Rep. 3, 1450 (2013).
17. Song, M., Wu, Y.D., Chen, D., Wang, X.M., Sun, C., Yu, K., Chen, Y., Shao, L., Yang, Y., Hartwig, K.T., and Zhang, X.: Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation. Acta Mater. 74, 285 (2014).
18. Wang, H., Araujo, R., Swadener, J.G., Wang, Y.Q., Zhang, X., Fu, E.G., and Cagin, T.: Ion irradiation effects in nanocrystalline TiN coatings. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 1162 (2007).
19. Shen, T.D., Feng, S., Tang, M., Valdez, J.A., Wang, Y.Q., and Sickafus, K.E.: Enhanced radiation tolerance in nanocrystalline MgGa2O4 . Appl. Phys. Lett. 90, 263115 (2007).
20. Sun, C., Song, M., Yu, K.Y., Chen, Y., Kirk, M., Li, M., Wang, H., and Zhang, X.: In situ evidence of defect cluster absorption by grain boundaries in Kr ion irradiated nanocrystalline Ni. Metall. Mater. Trans. A 44(4), 1966 (2013).
21. Klueh, R.L., Gelles, D.S., Jitsukawa, S., Kimura, A., Odette, G.R., van der Schaaf, B., and Victoria, M.: Ferritic/martensitic steels—Overview of recent results. J. Nucl. Mater. 307311, 455 (2002).
22. Murty, K.L. and Charit, I.: Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383(1–2), 189 (2008).
23. Odette, G.R., Alinger, M.J., and Wirth, B.D.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).
24. Schäublin, R., Ramar, A., Baluc, N., de Castro, V., Monge, M.A., Leguey, T., Schmid, N., and Bonjour, C.: Microstructural development under irradiation in European ODS ferritic/martensitic steels. J. Nucl. Mater. 351(1–3), 247 (2006).
25. Ukai, S. and Fujiwara, M.: Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 307311, 749 (2002).
26. Hsiung, L.L., Fluss, M.J., Tumey, S.J., Choi, B.W., Serruys, Y., Willaime, F., and Kimura, A.: Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance. Phys. Rev. B 82(18), 184103 (2010).
27. Jiao, L., Chen, A., Myers, M.T., General, M.J., Shao, L., Zhang, X., and Wang, H.: Enhanced ion irradiation tolerance properties in TiN/MgO nanolayer films. J. Nucl. Mater. 434(1–3), 217 (2013).
28. Kim, I., Jiao, L., Khatkhatay, F., Martin, M.S., Lee, J., Shao, L., Zhang, X., Swadener, J.G., Wang, Y.Q., Gan, J., Cole, J.I., and Wang, H.: Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films. J. Nucl. Mater. 441(1–3), 47 (2013).
29. Anderoglu, O., Zhou, M.J., Zhang, J., Wang, Y.Q., Maloy, S.A., Baldwin, J.K., and Misra, A.: He+ ion irradiation response of Fe–TiO2 multilayers. J. Nucl. Mater. 435(1–3), 96 (2013).
30. Chen, Y., Jiao, L., Sun, C., Song, M., Yu, K.Y., Liu, Y., Kirk, M., Li, M., Wang, H., and Zhang, X.: In situ studies of radiation induced crystallization in Fe/a-Y2O3 nanolayers. J. Nucl. Mater. 452(1–3), 321 (2014).
31. Zhang, X., Fu, E.G., Li, N., Misra, A., Wang, Y-Q., Shao, L., and Wang, H.: Design of radiation tolerant nanostructured metallic multilayers. J. Eng. Mater. Technol. 134, 041010 (2012).
32. Shao, S., Wang, J., Misra, A., and Hoagland, R.G.: Spiral patterns of dislocations at nodes in (111) semi-coherent fcc interfaces. Sci. Rep. 3, 2448 (2013).
33. Li, N., Nastasi, M., and Misra, A.: Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 32, 1 (2012).
34. Hattar, K., Demkowicz, M.J., Misra, A., Robertson, I.M., and Hoagland, R.G.: Arrest of He bubble growth in Cu–Nb multilayer nanocomposites. Scr. Mater. 58(7), 541 (2008).
35. Fu, E.G., Carter, J., Swadener, G., Misra, A., Shao, L., Wang, H., and Zhang, X.: Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates. J. Nucl. Mater. 385(3), 629 (2009).
36. Fu, E.G., Misra, A., Wang, H., Shao, L., and Zhang, X.: Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J. Nucl. Mater. 407(3), 178 (2010).
37. Fu, E.G., Wang, H., Carter, J., Shao, L., Wang, Y.Q., and Zhang, X.: Fluence-dependent radiation damage in helium (He) ion-irradiated Cu/V multilayers. Philos. Mag. 93(8), 883 (2013).
38. Li, N., Carter, J.J., Misra, A., Shao, L., Wang, H., and Zhang, X.: The influence of interfaces on the formation of bubbles in He-ion-irradiated Cu/Mo nanolayers. Philos. Mag. Lett. 91(1), 18 (2010).
39. Gao, Y., Yang, T., Xue, J., Yan, S., Zhou, S., Wang, Y., Kwok, D.T.K., Chu, P.K., and Zhang, Y.: Radiation tolerance of Cu/W multilayered nanocomposites. J. Nucl. Mater. 413(1), 11 (2011).
40. Li, N., Martin, M.S., Anderoglu, O., Misra, A., Shao, L., Wang, H., and Zhang, X.: He ion irradiation damage to Al/Nb multilayers. J. Appl. Phys. 105, 123522 (2009).
41. Wei, Q.M., Li, N., Mara, N., Nastasi, M., and Misra, A.: Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Mater. 59(16), 6331 (2011).
42. Wei, Q.M., Wang, Y.Q., Nastasi, M., and Misra, A.: Nucleation and growth of bubbles in He ion-implanted V/Ag multilayers. Philos. Mag. 91(4), 553 (2010).
43. Heinisch, H.L., Gao, F., and Kurtz, R.J.: The effects of interfaces on radiation damage production in layered metal composites. J. Nucl. Mater. 329333, 924 (2004).
44. Yu, K.Y., Liu, Y., Fu, E.G., Wang, Y.Q., Myers, M.T., Wang, H., Shao, L., and Zhang, X.: Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers. J. Nucl. Mater. 440(1–3), 310 (2013).
45. Yu, K.Y., Sun, C., Chen, Y., Liu, Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study. Philos. Mag. 93(26), 3547 (2013).
46. Chen, Y., Liu, Y., Fu, E.G., Sun, C., Yu, K.Y., Song, M., Li, J., Wang, Y.Q., Wang, H., and Zhang, X.: Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. Acta Mater. 84, 393 (2015).
47. Li, N., Fu, E.G., Wang, H., Carter, J.J., Shao, L., Maloy, S.A., Misra, A., and Zhang, X.: He ion irradiation damage in Fe/W nanolayer films. J. Nucl. Mater. 389(2), 233 (2009).
48. Chen, Y., Liu, Y., Sun, C., Yu, K.Y., Song, M., Wang, H., and Zhang, X.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60, 6312 (2012).
49. Ziegler, J.F. and Biersack, J.P.: SRIM-2008, Stopping Power and Range of Ions in Matter. Calculation Using the Stopping and Range of Ions in Matter (SRIM) Code. <>. (2008).
50. McPhie, M.G., Capolungo, L., Dunn, A.Y., and Cherkaoui, M.: Interfacial trapping mechanism of He in Cu-Nb multilayer materials. J. Nucl. Mater. 437, 222 (2013).
51. Trinkaus, H. and Singh, B.N.: Helium accumulation in metals during irradiation—Where do we stand? J. Nucl. Mater. 323(2–3), 229 (2003).
52. Tyson, W.R. and Miller, W.A.: Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf. Sci. 62(1), 267 (1977).
53. Hough, R.R. and Rolls, R.: Copper diffusion in iron during high-temperature tensile creep. Metall. Trans. 2(9), 2471 (1971).
54. Liu, Y., Bufford, D., Wang, H., Sun, C., and Zhang, X.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59(5), 1924 (2011).
55. Wonnell, S.K., Delaye, J.M., Bibolé, M., and Limoge, Y.: Activation volume for the interdiffusion of Ag-Au multilayers. J. Appl. Phys. 72(11), 5195 (1992).
56. Bufford, D., Bi, Z., Jia, Q.X., Wang, H., and Zhang, X.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101(22), 223112 (2012).
57. Bufford, D., Liu, Y., Zhu, Y., Bi, Z., Jia, Q.X., Wang, H., and Zhang, X.: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1(1), 51 (2013).
58. Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472 (1988).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed