Skip to main content Accessibility help
×
Home

Enhanced photocatalytic activity of Eu3+- and Gd3+-doped BiPO4

  • Hongwei Huang (a1), Hongjie Qi (a1), Ying He (a1), Na Tian (a1) and Yihe Zhang (a1)...

Abstract

Novel europium- and gadolinium-doped bismuth phosphate (Eu/BiPO4 and Gd/BiPO4) microcrystals have been synthesized by a hydrothermal route. The morphologies and optical properties of the as-prepared samples were characterized carefully. Their photocatalytic activities were determined by oxidative decomposition of methylene blue (MB) in aqueous solution. The results revealed that europium and gadolinium doping greatly improves the photocatalytic efficiency of BiPO4 microcrystals. Among these as-prepared europium and gadolinium dopant samples, 1% Eu/BiPO4 and 5% Gd/BiPO4 displayed the highest photocatalytic activity, and the degradation rates are 2 and 2.7 times greater than pure BiPO4, respectively. The photodegradation reactions of MB by Eu- and Gd-BiPO4 followed first-order kinetics. The different photocatalytic mechanisms of Eu/BiPO4 and Gd/BiPO4 photocatalysts are discussed.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: hhw@cugb.edu.cn

References

Hide All
1.Wang, X.C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production. Nat. Mater. 8, 76 (2009).
2.Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M., and Ye, J.H.: Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).
3.Kubacka, A., Fernández-García, M., and Colón, G.: Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555 (2012).
4.Akurati, K.K., Vital, A., Dellemann, J.P., Michalow, K., Graule, T., Fetti, D., and Baiker, A.: Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Appl. Catal., B 79, 53 (2008).
5.Wang, H.Q., Miyauchi, M., Ishikawa, Y., Pyatenko, A., Koshizaki, N., Li, Y., Li, L., Li, X.Y., Bando, Y., and Golberg, D.: Single-crystalline rutile TiO2 hollow spheres: Room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102 (2011).
6.Feng, N.D., Wang, Q., Zheng, A.M., Zhang, Z.F., Fan, J., Liu, S.B., Amoureux, J.P., and Deng, F.: Understanding the high photocatalytic activity of (B, Ag)-co doped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 135, 1607 (2013).
7.Rawal, S.B., Sung, S.D., and Lee, W.I.: Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visible-light irradiation. Catal. Commun. 17, 131 (2012).
8.Choi, W., Termin, A., and Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994).
9.Vamathevan, V., Amal, R., Beydoun, D., Low, G., and McEvoy, S.: Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J. Photochem. Photobiol., A 148, 233 (2002).
10.He, C., Yu, Y., Hu, X.F., and Larbot, A.: Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci. 200, 239 (2002).
11.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).
12.Livraghi, S., Paganini, M.C., Giamello, E., Selloni, A., Di Valentin, C., and Pacchioni, G.: Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 128, 15666 (2006).
13.Feng, N., Zheng, A., Wang, Q., Ren, P., Gao, X., Liu, S.B., Shen, Z., Chen, T., and Deng, F.: Boron environments in b-doped and (B, N)-codoped TiO2 photocatalysts: A combined solid-state NMR and theoretical calculation study. J. Phys. Chem. C 115, 2709 (2011).
14.Chen, D.M., Zhu, Q., Lv, Z.J., Deng, X.T., Zhou, F.S., and Deng, Y.X.: Microstructural and photocatatlytic properties of Eu-doped mesporous titanium dioxide nanoparticles by sol-gel method. Mater. Res. Bull. 47, 3129 (2012).
15.Tian, Y., Zhang, L.D., and Zhang, J.X.: A superior visible light-driven photocatalyst: Europium-doped bismuth tungstate hierarchical microspheres. J. Alloys Compd. 537, 24 (2012).
16.Guo, R.R., Fang, L., Dong, W., Zheng, F.G., and Shen, M.R.: Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 114, 21390 (2010).
17.Pan, C.S. and Zhu, Y.F.: New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol. 44, 5570 (2010).
18.Zhao, M.L., Li, G.S., Li, L.P., Yang, L.S., and Zheng, J.: Structures and polymorph-sensitive luminescence properties of BiPO4/Eu grown in hydrothermal conditions. Cryst. Growth Des. 12, 3983 (2012).
19.Colon, G., Lopez, S.M., Hidalgo, M.C., and Navio, J.A., Sunlight highly photoactive Bi2WO6–TiO2 heterostructures for rhodamineB degradation. Chem. Commun. 46, 4809 (2010).
20.Liu, S.W., Yu, J.G., and Jaroniec, M.: Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 23, 4085 (2011).
21.Zhao, Y.B., Ma, W.H., Li, Y., Ji, H.W., Chen, C.C., Zhu, H.Y., and Zhao, J.C.: The surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem. Int. Ed. 51, 3188 (2012).
22.Xu, A.W., Gao, Y., and Liu, H.Q.: The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207, 151 (2002).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed