Skip to main content Accessibility help

Enhanced hydrothermal conversion of surfactant-modified diatom microshells into barium titanate replicas

  • Eric M. Ernst (a1), Ben C. Church (a1), Christopher S. Gaddis (a1), Robert L. Snyder (a1) and Kenneth H. Sandhage (a1)...


The three-dimensional nanostructured SiO2-based microshells of diatoms have been converted into nanocrystalline BaTiO3 via a series of shape-preserving reactions. The microshells, obtained as diatomaceous earth, were first exposed to a surfactant-induced dissolution/reprecipitation process [C.E. Fowler, et al., Chem. Phys. Lett.398, 414 (2004)] to enhance the microshell surface area, without altering the microshell shape. The SiO2 microshells were then converted into anatase TiO2 replicas via reaction with TiF4 gas and then humid oxygen. Hydrothermal reaction with a barium hydroxide-bearing solution then yielded three-dimensional nanocrystalline microshell replicas composed of BaTiO3. The enhanced surface area of the surfactant-treated microshells resulted in faster conversion into phase-pure BaTiO3 at 100 °C.


Corresponding author

a) This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to


Hide All
1Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797 (1999).
2Miclea, C., Tanasoiu, C., Miclea, C.F., and Tanasoiu, V.: Advanced electroceramic materials for electrotechnical applications. J. Optoelectron. Adv. Mater. 4, 51 (2002).
3Pandey, D., Singh, A.P., and Tiwari, V.S.: Developments in ferroelectric ceramics for capacitor applications. Bull. Mater. Sci. 15, 391 (1992).
4Alles, A.B., Amarakoon, V.R.W., and Burdick, V.L.: Positive temperature coefficient of resistivity effect in undoped, atmospherically reduced barium titanate. J. Am. Ceram. Soc. 72, 148 (1989).
5Caballero, A.C., Villegas, M., Fernandez, J.F., Viviani, M., Buscaglia, M.T., and Leoni, M.: Effect of humidity on the electrical response of porous BaTiO3 ceramics. J. Mater. Sci. Lett. 18, 1297 (1999).
6Haeusler, A. and Meyer, J-U.: A novel thick film conductive type CO2 sensor. Sens. Actuators, B Chem. 34, 388 (1996).
7Li, J., Yong, J., and Kuwabara, M.: Photoluminescence and its enhancement of Pr+3-doped BaTiO3 phosphor. Jpn. J. Appl. Phys. 2 Lett. 44, L708 (2005).
8Cruz, D. Hernandez, Sahouli, B., Tork, A., Knystautas, E.J., and Lessard, R.A.: XPS and RBS analysis of the composition and structure of barium titanate thin films to be used in DRAMs. SPIE Proc. 4296, 244 (2001).
9Pithan, C., Hennings, D., and Waser, R.: Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Appl. Ceram. Technol. 2, 1 (2005).
10Hennings, D.F.K., Schreinemacher, B. Seriyati, and Schreinemacher, H.: Solid-state preparation of BaTiO3-based dielectrics, using ultrafine raw materials. J. Am. Ceram. Soc. 84, 2777 (2001).
11Potdar, H.S., Singh, P., Deshpande, S.B., Godgole, P.D., and Date, S.K.: Low-temperature synthesis of ultrafine barium titanate (BaTiO3) using organometallic barium and titanium precursors. Mater. Lett. 10, 112 (1990).
12Wada, S., Narahara, M., Hoshina, T., Kakemoto, H., and Tsurumi, T.: Preparation of nm-sized BaTiO3 particles using a new 2-step thermal decomposition of barium titanyl oxalate. J. Mater. Sci. 38, 2655 (2003).
13O’Brien, S., Brus, L., and Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 (2001).
14Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating methods using the same to form a capacitor, U.S. Patent No. 3 330 697 (1967).
15Hu, M.Z-C., Kurian, V., Payzant, E.A., Rawn, C.J., and Hunt, R.D.: Wet-chemical synthesis of monodispersed barium titanate particles—Hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3. Powder Technol. 110, 2 (2000).
16Zhu, W., Akbar, S.A., Asiaie, R., and Dutta, P.K.: Synthesis, microstructure, and electrical properties of hydrothermally prepared ferroelectric BaTiO3 thin films. J. Electroceram. 2, 21 (1998).
17Ueyama, R., Harada, M., Ueyama, T., Yamamoto, T., Shiosaki, T., Kiyoshi, K., Koumoto, K., and Seo, W.S.: Preparation of BaTiO3 ultrafine particles by micro-emulsion charring method. J. Mater. Sci. Mater. Electron. 11, 139 (2000).
18Stojanovic, B.D.: Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 143–144, 78 (2003).
19Luo, S., Tang, Z., Yao, W., and Zhang, Z.: Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders. Microelectron. Eng. 66, 147 (2003).
20Frey, M.H. and Payne, D.A.: Nanocrystalline barium titanate: Evidence for the absence of ferroelectricity in sol-gel derived thin-layer capacitors. Appl. Phys. Lett. 63, 2753 (1993).
21Kamigaki, Y., Nagakari, T., and Nanbu, S.: Ceramic capacitor from cubic BaTiO3, Japan Patent No. 08330179 (December 13, 1996).
22Wang, J., Wan, H., and Lin, Q.: Properties of a nanocrystalline barium titanate on silicon humidity sensor. Meas. Sci. Technol. 14, 172 (2003).
23Wang, J., Xu, B., Liu, G., Zhang, J., and Zhang, T.: Improvement of nanocrystalline BaTiO3 humidity sensing properties. Sens. Actuators, B Chem. 66, 159 (2000).
24Wei, Q., Luo, W.D., Liao, B., Liu, Y., and Wang, G.: Giant capacitance effect and physical model of nanocrystalline CuO–BaTiO3 semiconductor as a CO2 gas sensor. J. Appl. Phys. 88, 4818 (2000).
25Alencar, M.A.R.C., Maciel, G.S., de Araujo, C.B., and Patra, A.: Er+3-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 84, 4753 (2004).
26Joshi, U.A., Yoon, S., Baik, S., and Lee, J.S.: Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: A structural investigation. J. Phys. Chem. 110, 12249 (2006).
27Wei, J.H., Shi, J., Liu, Z.Y., and Wang, J.B.: Polymer-assisted synthesis of BaTiO3 nanorods. J. Mater. Sci. 41, 3127 (2006).
28Luo, Y., Szafraniak, I., Zakharov, N.D., Nagarajan, V., Steinhart, M., Wehrspohn, R.B., Wendorff, J.H., Ramesh, R., and Alexe, M.: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 (2003).
29Nakano, H. and Nakamura, H.: Preparation of hollow BaTiO3 and anatase spheres by the layer-by-layer colloidal templating method. J. Am. Ceram. Soc. 89, 1455 (2006).
30Lee, J-Y., Hong, S-H., Lee, J-H., Lee, Y.K., and Choi, J-Y.: Uniform coating of nanometer-scale BaTiO3 layer on spherical Ni particles via hydrothermal conversion of Ti-hydroxide. J. Am. Ceram. Soc. 88, 303 (2005).
31Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., and Fratzl, P.: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275 (2005).
32Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., and Hendler, G.: Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819 (2001).
33Addadi, L., Joester, D., Nudelman, F., and Weiner, S.: Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem. A. Eur. J. 12, 980 (2006).
34Schuler, D. and Frankel, R.B.: Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52, 464 (1999).
35Bauerlein, E.: Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Ed. Engl. 42, 614 (2003).
36Young, J.R., Davis, S.A., Bown, P.R., and Mann, S.: Coccolith ultrastructure and biomineralisation. J. Struct. Biol. 126, 195 (1999).
37Young, J.R. and Henriksen, K.: Biomineralization within vesicles: The calcite of coccoliths. Rev. Mineral. Geochem. 54, 189 (2003).
38Hildebrand, M. and Wetherbee, R.: Components and control of silicification in diatoms, in Progress in Molecular and Subcellular Biology Vol. 33, edited by Muller, W.E.G. (Springer-Verlag, Berlin, Germany, 2003), p. 11.
39Crawford, S.A., Higgins, M.J., Mulvaney, P., and Wetherbee, R.: Nanostructure of the diatom microshell as revealed by atomic force and scanning electron microscopy. J. Phycol. 37, 543 (2001).
40Round, F.E., Crawford, R.M., and Mann, D.G.: The diatoms: Biology and morphology of the genera (Cambridge University Press, Cambridge, UK, 1990).
41Mann, D.G. and Droop, S.J.M.: Biodiversity, biogeography, and conservation of diatoms. Hydrobiol. 336, 19 (1996).
42Lebeau, T. and Robert, J-M.: Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various length scales. Appl. Microbiol. Biotechnol. 60, 612 (2003).
43Duerr, E.O., Molnar, A., and Sato, V.: Cultured microalgae as aquaculture feeds. J. Mar. Biotechnol. 7, 65 (1998).
44Apt, K.E., Kroth-Pancic, P.G., and Grossmann, A.R.: Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genomics. 252, 572 (1999).
45Fisher, H., Robl, I., Sumper, M., and Kröger, N.: Targeting and covalent modification of cell wall and membrane proteins heterogeneously expressed in the diatom Cylindrotheca fusiformis. J. Phycol. 35, 113 (1999).
46Hildebrand, M.: Prospects of manipulating diatom silica nanostructure. J. Nanosci. Nanotechnol. 5, 146 (2005).
47Sandhage, K.H., Snyder, R.L., Ahmad, G., Allan, S.M., Cai, Y., Dickerson, M.B., Gaddis, C.S., Haluska, M.S., Shian, S., Weatherspoon, M.R., Rapp, R.A., Unocic, R.R., Zalar, F.M., Zhang, Y., Hildebrand, M., and Palenik, B.P.: Merging biological self-assembly with synthetic chemical tailoring: The potential for 3-D genetically-engineered micro/nanodevices (3-D GEMS). Int. J. Appl. Ceram. Technol. 2, 317 (2005).
48Sandhage, K.H.: Shaped microcomponents via reactive conversion of biologically-derived microtemplates, U.S. Patent No. 7 067 104 (June 27, 2006).
49Sandhage, K.H., Dickerson, M.B., Huseman, P.M., Caranna, M.A., Clifton, J.D., Bull, T.A., Heibel, T.J., Overton, W.R., and Schoenwaelder, M.E.A.: Novel, bioclastic route to self-assembled, 3-D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14, 429 (2002).
50Zalar, F.M., Dickerson, M.B., and Sandhage, K.H.: Self-assembled, 3-D nanoparticle structures with tailored chemistries via the BaSIC process, in Processing and Fabrication of Advanced Materials XI Vol. 2, edited by Srivatsan, T.S. and Varin, R.A. (ASM International, Materials Park, OH, 2003), p. 415.
51Unocic, R.R., Zalar, F.M., Sarosi, P.M., Cai, Y., and Sandhage, K.H.: Anatase assemblies from algae: Coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry. Chem. Commun. 7, 795 (2004).
52Cai, Y., Allan, S.M., Zalar, F.M., and Sandhage, K.H.: Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells. J. Am. Ceram. Soc. 88, 2005 (2005).
53Shian, S., Cai, Y., Weatherspoon, M.R., Allan, S.M., and Sandhage, K.H.: Three-dimensional assemblies of zirconia nanocrystals via shape-preserving reactive conversion of diatom microshells. J. Am. Ceram. Soc. 89, 694 (2006).
54Lytle, J.C., Yan, H., Turgeon, R.T., and Stein, A.: Multistep, low-temperature pseudomorphic transformations of nanostructured silica to titania via a titanium oxyfluoride intermediate. Chem. Mater. 16, 3829 (2004).
55Machin, J.S. and Deadmore, D.L.: Thermal stability of titanium dioxide. Nature. 189, 223 (1961).
56Cai, Y., Weatherspoon, M.R., Ernst, E., Haluska, M.S., Snyder, R.L., and Sandhage, K.H.: 3-D microparticles of BaTiO3 and Zn2SiO4 via the chemical (sol-gel, acetate, or hydrothermal) conversion of biological (diatom) templates. Ceram. Eng. Sci. Proc. 27, 49 (2006).
57Dudley, S., Kalem, T., and Akinc, M.: Conversion of SiO2 diatom microshells to BaTiO3 and SrTiO3. J. Am. Ceram. Soc. 89, 2434 (2006).
58Anderson, M.W., Holmes, S.M., Hanif, N., and Cundy, C.S.: Hierarchical pore structures through diatom zeolitization. Angew. Chem. Int. Ed. Engl. 39, 2707 (2000).
59Wang, Y., Tang, Y., Dong, A., Wang, X., Ren, N., and Gao, Z.: Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor phase transport process. J. Mater. Chem. 12, 1812 (2002).
60Gaddis, C.S. and Sandhage, K.H.: Freestanding microscale 3-D polymeric structures with biologically-derived shapes and nanoscale features. J. Mater. Res. 19, 2541 (2004).
61Rosi, N.L., Thaxton, C.S., and Mirkin, C.A.: Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Ed. Engl. 43, 5500 (2004).
62Weatherspoon, M.R., Allan, S.M., Hunt, E., Cai, Y., and Sandhage, K.H.: Sol-gel synthesis on self-replicating single-cell scaffolds: Applying complex chemistries to nature’s 3-D nanostructured templates. Chem. Commun. 5, 651 (2005).
63Cai, Y. and Sandhage, K.H.: Zn2SiO4-coated microparticles with biologically-controlled 3-D shapes. Phys. Status Solidi A. 202, R105 (2005).
64Zhao, J., Gaddis, C.S., Cai, Y., and Sandhage, K.H.: Free-standing microscale structures of zirconia nanocrystals with biologically replicable 3-D shapes. J. Mater. Res. 20, 282 (2005).
65Weatherspoon, M.R., Haluska, M.S., Cai, Y., King, J.S., Summers, C.J., Snyder, R.L., and Sandhage, K.H.: Phosphor microparticles of controlled 3-D shape from phytoplankton. J. Electrochem. Soc. 153, H34 (2006).
66Gaddis, C.S.: Diatom alchemy. M.S. Thesis, Georgia Institute of Technology (2004), p. 62.
67Fowler, C.E., Hoog, Y., Vidal, L., and Lebeau, B.: Mesoporosity in diatoms via surfactant induced silica rearrangement. Chem. Phys. Lett. 398, 414 (2004).
68Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).
69Eckert, J.O. Jr., Hung-Houston, C.C., Gersten, B.L., Lencka, M.M., and Riman, R.E.: Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79, 2929 (1996).
70Chen, K-Y. and Chen, Y-W.: Preparation of monodispersed spherical barium titanate particles. J. Mater. Sci. 40, 991 (2005).
71Padture, N.P. and Wei, X.: Hydrothermal synthesis of thin films of barium titanate ceramic nano-tubes at 200 °C. J. Am. Ceram. Soc. 86, 2215 (2003).
72Watanabe, K., Okada, T., Choe, I., and Sato, Y.: Organic vapor sensitivity in a porous silicon device. Sens. Actuators B 33, 194 (1996).
73Hertl, W.: Kinetics of barium titanate synthesis. J. Am. Ceram. Soc. 71, 879 (1988).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed