Skip to main content Accessibility help

Enhanced densification of Ti-6Al-4V/TiC powder blends by transformation mismatch plasticity

  • Bing Ye (a1), Marc R. Matsen (a2) and David C. Dunand (a3)


Ti-6Al-4V alloy with attractive properties such as corrosion resistance and high specific strength has a broad impact on daily life in the field of aerospace and medicine. The addition of TiC to Ti-6Al-4V is to further improve abrasion resistance and hardness. To have a low processing cost and precise control of the TiC volume fraction and distribution, the composite is densified with a blend of Ti-6Al-4V and TiC powders through a powder metallurgy route. The densification kinetics of the blend is studied for uniaxial die pressing (i) under isothermal conditions at 1020 °C, where β-Ti-6Al-4V deforms by creep and (ii) upon thermal cycling from 860 to 1020 °C, where the α-β transformation leads to transformation superplasticity. Densification curves for both isothermal and thermal cycling for various applied stresses and TiC fractions are in general agreement with predictions from continuum models and finite element simulation models performed at the powder level.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Boyer, R.R.: An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng., A 213(1–2), 103 (1996).
2.Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants - a review. Prog. Mater. Sci. 54(3), 397 (2009).
3.Abkowitz, S.: Titanium: From jets to biomedical devices. Adv. Mater. Process. 163(7), 53 (2005).
4.Abkowitz, S., Abkowitz, S., Fisher, H., and Schwartz, P.: CermeTi® discontinuously reinforced Ti-matrix composites: Manufacturing, properties, and applications. JOM. 56(5), 37 (2004).
5.Choe, H., Abkowitz, S., and Abkowitz, S.M.: Influence of processing on the mechanical properties of Ti-6Al-4V-based composites reinforced with 7.5 mass% TiC and 7.5 mass% W. Mater. Trans. 49(9), 2153 (2008).
6.Lu, J., Qin, J., Chen, Y., Zhang, Z., Lu, W., and Zhang, D.: Superplasticity of coarse-grained (TiB+TiC)/Ti-6Al-4V composite. J. Alloys Compd. 490(1–2), 118 (2010).
7.Taylor, N., Dunand, D.C., and Mortensen, A.: Initial stage hot pressing of monosized Ti and 90% Ti-10% TiC powders. Acta Mater. 41(3), 955 (1993).
8.Yolton, C.: The pre-alloyed powder metallurgy of titanium with boron and carbon additions. JOM 56(5), 56 (2004).
9.Ranganath, S.: A review on particulate-reinforced titanium matrix composites. J. Mater. Sci. 32(1), 1 (1997).
10.Wilkinson, D.S. and Ashby, M.F.: Pressure sintering by power law creep. Acta Metall. Mater. 23(11), 1277 (1975).
11.Arzt, E., Ashby, M., and Easterling, K.: Practical applications of hotisostatic pressing diagrams: Four case studies. Metall. Mater. Trans. A. 14(1), 211 (1983).
12.Helle, A.S., Easterling, K.E., and Ashby, M.F.: Hot-isostatic pressing diagrams: New developments. Acta Metall. Mater. 33(12), 2163 (1985).
13.Schuh, C., Noel, P., and Dunand, D.C.: Enhanced densification of metal powders by transformation-mismatch plasticity. Acta Mater. 48(8), 1639 (2000).
14.Schuh, C. and Dunand, D.C.: Non-isothermal transformation-mismatch plasticity: Modeling and experiments on Ti-6Al-4V. Acta Mater. 49(2), 199 (2001).
15.Ye, B., Matsen, M.R., and Dunand, D.C.: Enhanced densification of Ti-6Al-4V powders by transformation-mismatch plasticity. Acta Mater. 58(11), 3851 (2010).
16.Greenwood, G.W. and Johnson, R.H.: The deformation of metals under small stresses during phase transformations. Philos. Trans. R. Soc. London, Ser. A 283(1394), 403 (1965).
17.Zwigl, P. and Dunand, D.: Transformation superplasticity of zirconium. Metall. Mater. Trans. A. 29(10), 2571 (1998).
18.Dunand, D.C., Schuh, C., and Goldsby, D.L.: Pressure-induced transformation plasticity of H2O ice. Phys. Rev. Lett. 86(4), 668 (2001).
19.Schuh, C.A. and Dunand, D.C.: Enhanced densification of zinc powders through thermal cycling. Acta Mater. 50(6), 1349 (2002).
20.Ottino, J.M. and Lueptow, R.M.: Material science: On mixing and demixing. Science 319(5865), 912 (2008).
21.Shi, D., Abatan, A.A., Vargas, W.L., and McCarthy, J.J.: Eliminating segregation in free-surface flows of particles. Phys. Rev. Lett. 99(14), 148001 (2007).
22.Li, Q., Chen, E., Bice, D. and Dunand, D.: Transformation superplasticity of cast titanium and Ti-6Al-4V. Metall. Mater. Trans. A 38(1), 44 (2007).
23.Frost, H.J. and Ashby, M.F.: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, 1st ed. (Pergamon Press, Oxford, UK, 1982).
24.Schuh, C. and Dunand, D.C.: An overview of power-law creep in polycrystalline β-titanium. Scr. Mater. 45(12), 1415 (2001).
25.Zhu, J., Liaw, P., Corum, J., and McCoy, H.: High-temperature mechanical behavior of Ti-6Al-4V alloy and TiC p/Ti-6Al-4V composite. Metall. Mater. Trans. A. 30(6), 1569 (1999).
26.Daymond, M., Lund, C., Bourke, M. and Dunand, D.: Elastic phase-strain distribution in a particulate-reinforced metal-matrix composite deforming by slip or creep. Metall. Mater. Trans. A. 30(11), 2989 (1999).
27.Dunand, D.C. and Myojin, S.: Biaxial deformation of Ti-6Al-4V and Ti-6Al-4V/TiC composites by transformation-mismatch superplasticity. Mater. Sci. Eng., A 230(1–2), 25 (1997).
28.Zwigl, P. and Dunand, D.: Transformation superplasticity of iron and Fe/TiC metal matrix composites. Metall. Mater. Trans. A. 29(2), 565 (1998).
29.Schuh, C. and Dunand, D.C.: Whisker alignment of Ti-6Al-4V/TiB composites during deformation by transformation superplasticity. Int. J. Plast. 17(3), 317 (2001).
30.Schuh, C. and Dunand, D.C.: Load transfer during transformation superplasticity of Ti-6Al-4V/TiB whisker-reinforced composites. Scr. Mater. 45(6), 631 (2001).
31.Frary, M., Schuh, C., and Dunand, D.C.: Kinetics of biaxial dome formation by transformation superplasticity of titanium alloys and composites. Metall. Mater. Trans. A. 33(6), 1669 (2002).
32.Besson, J. and Evans, A.G.: The effect of reinforcements on the densification of a metal powder. Acta Metall. Mater. 40(9), 2247 (1992).
33.Martin, C.L. and Bouvard, D.: Study of the cold compaction of composite powders by the discrete element method. Acta Mater. 51(2), 373 (2003).
34.Olmos, L., Martin, C.L., and Bouvard, D.: Sintering of mixtures of powders: Experiments and modelling. Powder Technol. 190(1–2), 134 (2009).
35.Shackelford, J.F. and Alexander, W.: CRC Materials Science and Engineering Handbook, 3rd ed. (CRC Press, Boca Raton, FL, 2000).
36.Dura, O.J., Bauer, E., Vazquez, L., and Lopez de la Torre, M.A.: Depressed thermal conductivity of mechanically alloyed nanocrystalline 10 mol% yttria-stabilized zirconia. J. Phys. D. 43(10), 105407 (2010).
37.Ye, B., Matsen, M., and Dunand, D.: Finite-element modeling of titanium powder densification. Metall. Mater. Trans. A. 43(1), 381 (2012).
38.Chang, R. and Graham, L.J.: Low-temperature elastic properties of ZrC and TiC. J. Appl. Phys. 37(10), 3778 (1966).

Enhanced densification of Ti-6Al-4V/TiC powder blends by transformation mismatch plasticity

  • Bing Ye (a1), Marc R. Matsen (a2) and David C. Dunand (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed