Skip to main content Accessibility help
×
Home

Energy principle of indentation contact: The application to sapphire

  • Roman Nowak (a1) and Mototsugu Sakai (a1)

Abstract

The recently developed energy principle of indentation mechanics was applied to the continuous indentation test performed on pure sapphire. Three crystallographic planes, M = (10$\overline 1$0), A = (1$\overline 1$10), and C = (0001), have been indented by a symmetrical triangular pyramid (Berkovich). The distinct anisotropic behavior of the indented crystal has been observed for the maximum indentation loads of 1.961 N, 0.686 N, and 0.392 N. The indentation hysteresis loop energy and the related “true hardness parameter” have been determined for various crystallographic orientations, as well as for two different orientations of the indenter. The observed effects have been discussed in terms of the energy principle of indentation with crystallographic considerations. The effective resolved shear stresses for the slip and twinning systems were calculated and applied to the anisotropic indentation behavior. It was concluded that the energy principle is highly recommended for analyzing the data of continuous indentation tests.

Copyright

References

Hide All
1Armstrong, R. W. and Robinson, W. H.N. Z. J. Sci. 17, 429 (1974).
2Cousins, W. J.Armstrong, R. W. and Robinson, W. H.J. Mater. Sci. 10, 1655 (1975).
3Newey, D.Wilkins, M.A. and Pollock, H. M.J. Phys. E: Sci. Instrum. 15, 119 (1982).
4Pethica, J. B.Hutchings, R. and Oliver, W. C.Philos. Mag. A48, 593 (1983).
5Cook, R.F. and Pharr, G.M.J. Am. Ceram. Soc. 73, 787 (1990).
6Tandon, R.Green, D. J. and Cook, R. F.J. Am. Ceram. Soc. 73, 2619 (1990).
7LaFontaine, W. R.Paszkiet, C. A.Korhonen, M. A. and Li, Che-Yu, J. Mater. Res. 6, 2084 (1991).
8Stone, D.LaFontaine, W. R.Alexopoulos, P.Wu, T.W. and Li, C.Y., J. Mater. Res. 3, 141 (1988).
9Lucas, B. N.Oliver, W. C.Williams, R. K.Brynestad, J. and O'Hern, M. E., J. Mater. Res. 6, 2519 (1991).
10Pharr, G. M.Oliver, W. C.Cook, R. F.Kirchner, P. D.Kroll, M. C.Dinger, T. R. and Clarke, D. R.J. Mater. Res. 7, 961 (1992).
11Page, T.F.Oliver, W. C. and McHargue, C.J.J. Mater. Res. 7, 450 (1992).
12O'Hern, M.E., McHargue, C.J.White, C.W. and Farlow, G.C.Nucl. Instrum. Methods B46, 171 (1990).
13Nowak, R.Ueno, K. and Kinoshita, K. in Fracture Mechanics of Ceramics, edited by Bradt, R. C.Hasselman, D. P. H.Mung, D.Sakai, M. and Shevchenko, V. Ya. (Plenum Press, New York, 1992), Vol. 10, pp. 155174.
14Doerner, M. F. and Nix, W. D.J. Mater. Res. 1, 601 (1986).
15Pharr, G.M.Oliver, W.C. and Brotzen, F.R.J. Mater. Res. 7, 613 (1992).
16Shih, C.W.Yang, M. and J.Li, C.M.J. Mater. Res. 6, 2623 (1991).
17Oliver, W.C. and Pharr, G.M.J. Mater. Res. 7, 1564 (1992).
18Bhattacharya, A. K. and Nix, W. D.Int. J. Solids Structures 24, 881 (1988).
19Laursen, T.A. and Simo, J.C.J. Mater. Res. 7, 618 (1992).
20Hertz, H. R.Miscellaneous Papers (Macmillan, London, 1986), Chaps. 5 and 6.
21Johnson, K. L.Contact Mechanics (Cambridge University Press, Cambridge, 1985).
22Hirsch, P. B.Pirouz, P.Roberts, S. G. and Warren, P. D.Philos. Mag. 52B, 759 (1985).
23Nadai, A.Plasticity (McGraw-Hill, New York, 1931), p. 247.
24Sneddon, I.N.J. Eng. Sci. 3, 47 (1965).
>25. (a) Sakai, M.>Acta Metall. Mater., in press; (b) M. Sakai and R. Nowak Ceramics–Adding the Value, edited by M. J. Bannister Aust. Ceram. Soc. 2, 922-931 (1992).
26Pharr, G. M. and Oliver, W.C.J. Mater. Res. 4, 94 (1989).
27Joslin, D. L. and Oliver, W. C.J. Mater. Res. 5, 123 (1990).
28Pharr, G. M. and Cook, R. F.J. Mater. Res. 5, 847 (1990).
29Tanaka, K.Koguchi, H. and Mura, T.Int. J. Eng. Sci. 27, 11 (1989).
30Kronberg, M. L.Acta Metall. 5, 507 (1957).
31Brethau, T.Castaing, J.Rabier, J. and Veyssiere, P.Adv. Phys. 28, 829 (1979).
32Bradt, R. C. and Scott, W. D. in Alumina Chemicals: Science and Technology Handbook, edited by Hart, LeRoy D. (The American Ceramics Society Inc., Westerville, OH, 1990), pp. 2339.
33Nowak, R.Ueno, K. and Kinoshita, K.Proc. 6th Int. Conf. Mechan. Behav. Mater., edited by Jono, M. and Inoue, T. (Perga-mon Press, Oxford, 1991), pp. 551556.
34Pharr, G. M. and Oliver, W. C.Mater. Res. Bull. XVII 28 (1992).
35Hockey, B.J.J. Am. Ceram. Soc. 54, 223 (1971).
36Kollenberg, W.J. Mater. Sci. 23, 3321 (1988).
37Kaji, M. and Bradt, R. C. in press.
38Iwasa, M. and Bradt, R. C.Adv. Ceram. 10, 767 (1985).
39Nowak, R. and Sakai, M. unpublished work.
40Daniels, F.W. and Dunn, C. G.Trans. Am. Soc. Met. 41, 419 (1949).
41Lagerlof, K. P. D.Mitchell, T.E. and Heuer, A.H. in Interfaces and Contacts, edited by Ludeke, R. and Rose, K. (Mater. Res. Soc. Symp. Proc. 18, Elsevier Science Publishing, New York, 1984), p. 49.
42Nowak, R.Acta Crystallogr. A43, C-96 (1987).
43Pospiech, J. and Gryziecki, J.Arch. Hutn. XV 267 (1970).
44Brookes, C.A.O'Neill, J.B., and Redfern, A.W.Proc. R. Soc. London A322, 73 (1971).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed