Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T04:54:32.127Z Has data issue: false hasContentIssue false

Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon

Published online by Cambridge University Press:  31 January 2011

A. Meldrum
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131–1116
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6056
R. C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131–1116
Get access

Abstract

Synthetic LaPO4, ScPO4, and crystalline natural zircon (ZrSiO4) from Mud Tanks, Australia were irradiated by 1.5 MeV Kr+ ions until complete amorphization occurred as indicated by the absence of electron-diffraction maxima. The resulting amorphous materials were subsequently irradiated by an 80 to 300 keV electron beam in the transmission electron microscope at temperatures between 130 and 800 K, and the resulting microstructural changes were monitored in situ. Thermal anneals in the range of 500 to 600 K were also conducted to compare the thermally induced microstructural development with that produced by the electron irradiations. Amorphous LaPO4 and ScPO4 annealed to form a randomly oriented polycrystalline assemblage of the same composition as the original material, but zircon recrystallized to ZrO2 (zirconia) + amorphous SiO2 for all beam energies and temperatures investigated. The rate of crystallization increased in the order: zircon, ScPO4, LaPO4. Submicrometer tracks of crystallites having a width equal to that of the electron beam could be “drawn” on the amorphous substrate. In contrast, thermal annealing resulted in epitaxial recrystallization from the thick edges of the TEM samples. Electron-irradiation-induced nucleation and growth in these materials can be explained by a combination of radiation-enhanced diffusion as a result of ionization processes and a strong thermodynamic driving force for crystallization. The structure of the amorphous orthophosphates may be less rigid than that of their silicate analogues because of the lower coordination across the PO4 tetrahedron, and thus a lower energy is required for reorientation and recrystallization. The more highly constrained monazite structure-type recovers at a lower electron dose than the zircon structure-type, consistent with recent models used to predict the crystalline-to-amorphous transition as a result of ion irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stergioudis, G. A. and Polychroniadis, E. K., Mater. Res. Bull. 25, 1287 (1990).CrossRefGoogle Scholar
2.Maeda, A., Satake, T., Fujimori, T., Maeda, S., and Kuroda, H., Thin Solid Films 192, 135 (1990).CrossRefGoogle Scholar
3.Ba, L., Qin, Y., and Wu, Z., J. Appl. Phys. (in press).Google Scholar
4.Lulli, G., Merli, P. G., and Antisari, V., Phys. Rev. B 36, 8038 (1987).CrossRefGoogle Scholar
5.Lulli, G., Merli, P. G., and Antisari, V., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 375.Google Scholar
6.Corticelli, F., Lulli, G., and Merli, P. G., Philos. Mag. Lett. 61, 101 (1990).CrossRefGoogle Scholar
7.Hoehl, D., Heera, V., Bartsch, H., Wollschläger, K., Skorupa, W., and Voelskow, M., Phys. Status Solidi 122, K35 (1990).CrossRefGoogle Scholar
8.Bench, M. W., Robertson, I. M., and Kirk, M. A., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 27.Google Scholar
9.Lulli, G. and Merli, P. G., Phys. Rev. B 47, 14 023 (1993).CrossRefGoogle Scholar
10.Wada, T., Kanayama, T., Ichimura, S., Sugiyama, Y., and Komuro, M., Jpn. J. Appl. Phys. 33, 7228 (1994).CrossRefGoogle Scholar
11.Jenčič, I., Bench, M. W., and Robertson, I. M., J. Appl. Phys. 78, 974 (1995).CrossRefGoogle Scholar
12.Jenčič, I. and Robertson, I. M., J. Mater. Res. 11, 2152 (1996).CrossRefGoogle Scholar
13.Meldrum, A., Wang, L. M., and Ewing, R. C., Nucl. Instrum. Methods, Phys. Res. B 116, 220 (1996).CrossRefGoogle Scholar
14.Meldrum, A., Boatner, L. A., Wang, L. M., and Ewing, R. C., Nucl. Instrum. Methods, Phys. Res. B(in press).Google Scholar
15.Ewing, R. C. and Headley, T. J., J. Nucl. Mater. 119, 102 (1983).CrossRefGoogle Scholar
16.Weber, W. J. and Matzke, Hj., Mater. Lett. 5, 9 (1986).CrossRefGoogle Scholar
17.Weber, W. J., Wald, J. W., and Matzke, Hj., J. Nucl. Mater. 138, 196 (1986).CrossRefGoogle Scholar
18.Weber, W. J., Wald, J. W., and Matzke, Hj., Mater. Lett. 3, 173 (1985).CrossRefGoogle Scholar
19.Im, J. S. and Atwater, H. A., Appl. Phys. Lett. 57, 1766 (1990).CrossRefGoogle Scholar
20.Im, J. S. and Atwater, H. A., Nucl. Instrum. Methods, Phys. Res. B 59/60, 422 (1991).CrossRefGoogle Scholar
21.Spinella, C., Lombardo, S., Priolo, F., and Campisano, S. U., Phys. Rev. B 53, 7742 (1996).CrossRefGoogle Scholar
22.Inui, H., Mori, H., Sataka, T., and Fujita, H., J. Non-Cryst. Solids 116, 1 (1990).CrossRefGoogle Scholar
23.Hobbs, L. W. and Pascucci, M. R., J. Phys. 41, C6237 (1980).Google Scholar
24.Gong, W. L., Wang, L. M., Ewing, R. C., and Zhang, J., Phys. Rev. B 54, 3800 (1996).CrossRefGoogle Scholar
25.Iniu, H., Mori, H., and Fujita, H., Philos. Mag. B 61, 107 (1990).CrossRefGoogle Scholar
26.Bordes, N. and Ewing, R. C., in Microstructure of Irradiated Materials, edited by Robertson, I. M., Zinkle, S. J., Rehn, L. E., and Phythian, W. J. (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, PA, 1995), p. 395.Google Scholar
27.Sales, B. C., Zuhr, R. A., McCallum, J. C., and Boatner, L. A., Phys. Rev. B 46, 3215 (1992).CrossRefGoogle Scholar
28.Boatner, L. A., Beall, G. W., Abraham, M. M., Finch, C. B., Huray, P. G., and Rappaz, M., in Scientific Basis for Nuclear Waste Management, Vol. 2, edited by Northrup, C. J. M., Jr., (Plenum, New York, 1980), p. 289.CrossRefGoogle Scholar
29.Boatner, L. A., Abraham, M. M., and Rappaz, M., in Scientific Basis for Nuclear Waste Management, Vol. 3, edited by Moore, J. G. (Plenum, New York, 1981), p. 181.CrossRefGoogle Scholar
30.Boatner, L. A. and Sales, B. C., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (Elsevier, Amsterdam, 1988), p. 495.Google Scholar
31.Ewing, R. C., Lutze, W., and Weber, W. J., J. Mater. Res. 10, 243 (1995).CrossRefGoogle Scholar
32.Ewing, R. C., Weber, W. J., and Lutze, W., in Crystalline Ceramics: Waste Forms for the Disposal of Weapons Plutonium. NATO Workshop Proceedings, edited by Merz, E. R. and Walter, C. E. (Academic Publishers, Dordrecht, The Netherlands, 1996), pp. 6583.Google Scholar
33.Burakov, B. E., Anderson, E. B., Rovsha, V. S., Ushakov, S. V., Ewing, R. C., Lutze, W., and Weber, W. J., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W. M. and Knecht, D. A. (Plenum, New York, 1996), p. 33.Google Scholar
34.Parrish, R. R., Can. J. Earth Sci. 27, 1431 (1990).CrossRefGoogle Scholar
35.Heaman, L. and Parrish, R. R., in MAC Short Course on Radiogenic Isotope Systems, Vol. 19, edited by Heaman, L. and Ludden, J. N. (Mineralogical Association of Canada, Tornot, 1991), p. 59.Google Scholar
36.Mullica, D. F., Milligan, W. O., Grossie, D. A., Beall, G. W., and Boatner, L. A., Inorg. Chim. Acta 95, 231 (1984).CrossRefGoogle Scholar
37.Milligan, W. O., Mullica, D. F., Beall, G. W., and Boatner, L. A., Inorg. Chim. Acta 60, 39 (1982).CrossRefGoogle Scholar
38.Ni, Y., Hughes, J. M., and Mariano, A. N., Am. Min. 80, 21 (1995).CrossRefGoogle Scholar
39.Karioris, F. G., Gowda, K. Appaji, and Cartz, L., Radiat. Eff. Lett. 58, 1 (1981).CrossRefGoogle Scholar
40.Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R., and Weber, W. J., Am. Min. 76, 1510 (1991).Google Scholar
41.Wang, L. M. and Ewing, R. C., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 333.Google Scholar
42.Wang, L. M., Gong, W. L., and Ewing, R. C., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R., Holland, D. W., Jones, K. S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994), p. 247.Google Scholar
43.Ziegler, J. F., TRIM Version 96.01 (IBM-Research, Yorktown, NY, 1996).Google Scholar
44.Fisher, S. B., Radiat. Eff. 5, 239 (1970).CrossRefGoogle Scholar
45.Liu, M., Xu, L. Y., and Lin, X. Z., Scanning 16, 1 (1994).CrossRefGoogle Scholar
46.Meldrum, A., Wang, L. M., and Ewing, R. C., Am. Min. (in press).Google Scholar
47.Miller, M. L. and Ewing, R. C., Ultramicroscopy 48, 203 (1992).CrossRefGoogle Scholar
48.Yamada, N., Mater. Res. Soc. Bull. 21, 48 (1996).CrossRefGoogle Scholar
49.Chen, M., Rubin, K. A., and Barton, R. W., Appl. Phys. Lett. 49, 502 (1986).CrossRefGoogle Scholar
50.Babsail, L., Hamlin, N., and Townsend, P., Nucl. Instru. Methods, Phys. Rev. B 59/60, 1219 (1991).Google Scholar
51.Clinard, F. W. and Hobbs, L. W., in Physics of Radiation Effects in Crystals, edited by Johnson, R. A. and Orlov, A. N. (North-Holland, Amsterdam, 1986), p. 387.CrossRefGoogle Scholar
52.Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater. (in press).Google Scholar
53.Caturla, M. J., Diaz de la Rubia, T., and Gilmer, G. H., J. Appl. Phys. 77, 3121 (1995).CrossRefGoogle Scholar
54.Spaepen, F. and Turnbull, D., in Laser Annealing of Semiconductors, edited by Poate, J. M. and Mayer, J. W. (Academic Press, New York, 1982), p. 15.CrossRefGoogle Scholar
55.Farges, F., Phys. Chem. Minerals 20, 504 (1994).CrossRefGoogle Scholar
56.Ellsworth, S., Navrotsky, A., and Ewing, R. C., Phys. Chem. Minerals 21, 140 (1994).CrossRefGoogle Scholar
57.Wang, L. M. and Ewing, R. C., Nucl. Instru. Methods, Phys. Res. B 65, 324 (1992).CrossRefGoogle Scholar
58.Zinkle, S. J., J. Nucl. Mater. 219, 113 (1995).CrossRefGoogle Scholar
59.Zinkle, S. J., Nucl. Instrum. Methods, Phys. Res. B 91, 234 (1994).CrossRefGoogle Scholar
60.Weber, W. J., Ewing, R. C., and Wang, L. M., J. Mater. Res. 9, 688 (1994).CrossRefGoogle Scholar
61.Wang, S. X., Wang, L. M., and Ewing, R. C., (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, in press).Google Scholar
62.Hobbs, L. W., Nucl. Instrum. Methods, Phys. Res. B 91, 30 (1994).CrossRefGoogle Scholar