Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T04:29:48.207Z Has data issue: false hasContentIssue false

Electronic transport and microstructure in MoSi2 thin films

Published online by Cambridge University Press:  31 January 2011

T.L. Martin
Affiliation:
Department of Electrical Engineering and Condensed Matter Sciences Laboratory, Colorado State University, Fort Collins, Colorado 80523
J.E. Mahan
Affiliation:
Department of Electrical Engineering and Condensed Matter Sciences Laboratory, Colorado State University, Fort Collins, Colorado 80523
Get access

Abstract

Molybdenum disilicide thin films having the tetragonal crystal structure were prepared by furnace reaction of ion-beam-sputtered molybdenum layers with silicon substrates. The room temperature intrinsic resistivity is ∼20 μΩ cm. The Hall effect indicates predominantly hole conduction. Geometrical magnetoresistance measurements provide a carrier mobility estimate of 90 cm2 /V.s at room temperature. The Hall mobility is much less than this; the large difference between the two mobility values suggests multiband conduction. An isotropic, degenerate, twoband model may be fitted to the data with a comparatively low majority carrier concentration (holes) of ∼ 1.5 × 1021 cm−3 Regarding the effects of microstructure on transport, the residual resistivity for films formed on 1-0-0 silicon wafers is much greater than for those formed on an (LPCVD) polysilicon layer: 92 vs 29 μΩ cm, respectively. A correlation with average grain size for the two sample types suggests that grain boundary scattering is the principal cause of the residual resistivity. electronic materials; electrical properties; thin film

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Geipel, H. J., Hsieh, N., Ishaq, M. H., Koburger, J. W., and White, F. R., IEEE Trans. Electron Devices ED-27, 1417 (1980).Google Scholar
2Denison, D. R., J. Electron. Mater. 11, 1023 (1982).CrossRefGoogle Scholar
3Woerlee, P. H., Th, P. M.. Attekum, M. van, Hoeben, A. A. M., Hurkx, G. A. M., and Wolters, R. A. M., Appl. Phys. Lett. 44, 876 (1984).CrossRefGoogle Scholar
4Pantel, R., Campidelli, Y., and d'Avitaya, F. Arnaud, J. Electrochem. Soc. 131, 2426 (1984).CrossRefGoogle Scholar
5Neppl, F., Menzel, G., and Schwabe, U., J. Electrochem. Soc. 130, 1174 (1983).CrossRefGoogle Scholar
6Majni, G., Nava, F., Ottaviani, G., and Celotti, G., in the Proceedings of the Symposium on Thin Film Interfaces and Interactions, edited by Baglin, J. E. E. and Poate, J. M. (Electrochemical Society, Princeton, NJ, 1980), p. 414.Google Scholar
7Chow, T. P., Brown, D. M., Steckl, A. J., and Garfinkel, M., J. Appl. Phys. 51, 5981 (1980).Google Scholar
8Ho, V. Q. and Naguib, H. M., J. Vac. Sci. Technol. A 3, 896 (1985).Google Scholar
9Mochizuki, T., Tsujimaru, T., Kashiwagi, M., and Nishi, Y., in Ref. 1, p. 1431.Google Scholar
10Murarka, S. P., Fraser, D. B., Retajczyk, T. F., and Sheng, T. T., J. Appl. Phys. 51, 5380 (1980).Google Scholar
11Chow, T. P., Bower, D. H., Art, R. L. Van, and Katz, W., J. Electro-chem. Soc. 130, 952 (1983).Google Scholar
12Nowicki, R. S. and Moulder, J. F., J. Electrochem. Soc. 128, 562 (1980).Google Scholar
13Fukumoto, M., Shinohara, A., Okada, S., and Kugimiya, K., IEEE Trans. Electron Devices ED-31, 1432 (1984).Google Scholar
14Bakoglu, H. B. and Meindl, J. D., IEEE Trans. Electron Devices ED-32, 903 (1985).Google Scholar
15Malhotra, V., Martin, T. L., and Mahan, J. E., J. Vac. Sci. Technol. B 2, 10 (1984).CrossRefGoogle Scholar
16Martin, T. L., Malhotra, V., and Mahan, J. E., J. Electron. Mater. 13, 309 (1984).CrossRefGoogle Scholar
17Huang, M. T., Martin, T. L., Malhotra, V., and Mahan, J. E., J. Vac. Sci. Technol. B 3, 836 (1985).Google Scholar
18Malhotra, V., Martin, T. L., Huang, M. T., and Mahan, J. E., J. Vac. Sci. Technol. A 2, 271 (1984).CrossRefGoogle Scholar
19Campbell, D. R., Mader, S., and Chu, W. K., Thin Solid Films 93, 341 (1982).CrossRefGoogle Scholar
20Schenk, H. and Dehlinger, U., Acta Metall. 4, 7 (1956).CrossRefGoogle Scholar
21Bhattacharyya, B. K., Bylander, D. M., and Kleinman, L., Phys. Rev. B 32, 7973 (1985).CrossRefGoogle Scholar
22Robins, D. A., Philos. Mag. 3, 313 (1958).CrossRefGoogle Scholar
23Weaver, J. H., Moruzzi, V. L., and Schmidt, F. A., Phys. Rev. B 23, 23 (1981).Google Scholar
24Ged, Ph., Madar, R., and Senateur, J. P., Phys. Rev. B 29, 6981 (1984).CrossRefGoogle Scholar
25Glaser, F. W., J. Appl. Phys. 22, 103 (1951).CrossRefGoogle Scholar
26Neshpor, V. S. and Samsonov, G. V., Refractory Transition Metal Compounds; High Temperature Cermets, translated by Scripta-Technica, Inc., translation editors Gurr, G. E. and Parker, D. J. (Academic, New York, 1964), p. 162.CrossRefGoogle Scholar
27Neshpor, V. S. and Samsonov, G. V., Inorg. Mater. (USSR) 1, 599 (1965).Google Scholar
28Mooij, J. H., Phys. Status Solidi A 17, 521 (1973).CrossRefGoogle Scholar
29d'Heurle, F. M., LeGoues, F. K., and Joshi, R., Appl. Phys. Lett. 48, 332 (1986).Google Scholar
30Powder Diffraction Data File, Card 6-0681, American Society for Testing Materials (Philadelphia, PA).Google Scholar
31Perio, A., Torres, J., Bomchil, G., d'Avitaya, F. Arnaud, and Pantel, R., Appl. Phys. Lett. 45, 857 (1984).CrossRefGoogle Scholar
32Thomas, O., Senateur, J. P., and Madar, R. (to be published).Google Scholar
33Ziman, J. M., Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford, 1979), Chap. 9.Google Scholar
34The value obtained is ˜ 3 X 1O20 cm-3. A similar result was found for TaSi2 in Ref. 17, except that the Hall effect indicated primarily electron conduction.Google Scholar
35Mayadas, A. F. and Shatzkes, M., Phys. Rev. B, 1, 1382 (1970).CrossRefGoogle Scholar
36Beer, A. C., Galvanomagnetic Effects in Semiconductors (Academic, New York, 1963), Sees. 7, 12, and 16.Google Scholar
37Magee, T. J., Woolhouse, G. R., Kawayoshi, H. A., Niemeyer, I. C., Rodrigues, B., Ormond, R. D., and Bhandia, A. S., J. Vac. Sci. Technol. B 2, 756 (1984).CrossRefGoogle Scholar