Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T09:51:53.999Z Has data issue: false hasContentIssue false

Electron microscopy of the Pb-Sr-Ca-Er-Cu-O superconductor

Published online by Cambridge University Press:  31 January 2011

R. Ramesh
Affiliation:
Bellcore, Red Bank, New Jersey 07701-7020
E. Wang
Affiliation:
Bellcore, Red Bank, New Jersey 07701-7020
L. H. Greene
Affiliation:
Bellcore, Red Bank, New Jersey 07701-7020
M. S. Hegde
Affiliation:
Bellcore, Red Bank, New Jersey 07701-7020
J-M. Tarascon
Affiliation:
Bellcore, Red Bank, New Jersey 07701-7020
Y. Kim
Affiliation:
AT & T Bell Laboratories, Holmdel, New Jersey
Get access

Abstract

The structure and microstructure of a solid state processed Pb-Sr-Ca-Er-Cu-O superconductor have been investigated by transmission electron microscopy. In addition to the majority superconducting phase, at least two other impurity phases have been observed. The superconducting phase is a layered structure similar to the Bi2Sr2CaCu2Oy compound, with an extra Cu atom between the two PbO layers. Stacking defects inside the grain have been observed. A grain boundary amorphous phase has also been observed. The steps in the resistivity-temperature plot and the consequent absence of Tc,0 above 8 K are attributed to either the presence of the Pb2Sr2Cu2Oy unit cell at the grain boundary and/or a local enrichment of oxygen at the grain boundaries. Superlattice spots in the [100] zone axis diffraction patterns from regions enriched in Ca and Er with respect to the nominal composition are interpreted as due to ordering of Sr and Ca/Er in the Sr sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cava, R. J., Batlogg, B., Krajewski, J. J., Rupp, L.W., Schnee-meyer, L. F., Siegrist, T., van Dover, R. B., Marsh, P., Peck, W.F. Jr., Gallagher, P. K., Glarum, S. H., Marshall, J. H., Farrow, R. C., Waszczak, J.V., Hull, R., and Trevor, P., Nature 336, 211 (1988).CrossRefGoogle Scholar
2Subramanian, M.A., Gopalakrishnan, J., Torardi, C. C., Gai, P. L., Boyes, E. D., Askew, T. R., Flippen, R. B., Farneth, W. E., and Sleight, A.W. (preprint).Google Scholar
3Ramesh, R., Thomas, G., Green, S.M., Jiang, C., Mei, Y., Rudee, M.L., and Luo, H.L., Phys. Rev. B 38, 7070 (1988).CrossRefGoogle Scholar
4Green, S. M., Mei, Y., Manzi, A. E., Luo, H. L., Ramesh, R., and Thomas, G., J. Appl. Phys. 66, 728 (1989).CrossRefGoogle Scholar
5Ramesh, R., Green, S.M., Mei, Y., Manzi, A.E., and Luo, H.L., J. Appl. Phys. 66, 1265 (1989).CrossRefGoogle Scholar
6Kilaas, R., in Proc. of 45th Annual Meeting of EMSA, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1987), pp. 6669.Google Scholar
7Gallagher, P.K., O'Bryan, H.M., Cava, R.J., James, A.C.W.P., Murphy, D.W., Rhodes, W.W., Krajewski, J. J., Peck, W. F., and Waszczak, J.V., to appear in Materials Chemistry.Google Scholar
8Zandbergen, H.W., Kadowaki, K., Menken, M.J.V., Men-ovsky, A. A., van Tendeloo, G., and Amelinckx, S. (preprint).Google Scholar
9Ramesh, R., Thomas, G., Green, S. M., Mei, Y., Jiang, C., and Luo, H. L., Appl. Phys. Lett. 53, 1759 (1988).CrossRefGoogle Scholar