Skip to main content Accessibility help
×
Home

Electromechanical anisotropy behavior in Pb0.88Eu0.08Ti1−yMnyO3 system: Role of 90° domain reversal

  • O. Pérez Martínez (a1), J. M. Saniger Blesa (a2), A. Peláiz Barranco (a3) and F. Calderón Piñar (a3)

Abstract

An indirect observation of 90° domain reversal under the influence of a poling field process was undertaken by an x-ray diffraction study in the Pb0.88Eu0.08Ti1™y MnyO3 (y = 0, 0.01, 0.02, and 0.03) piezoelectric anisotropic system. The optimum condition kp → 0 was achieved for y = 0.02 composition. A large percentage of 90° domain rotation was necessary, but not a sufficient condition for the ultrahigh electromechanical anisotropy manifestation. A large microstrain originated by structural defects in unpoled samples seemed to play a crucial role in the attainment of this piezoelectric anisotropy. A breaking in the translational periodicity due to induced vacancy in Pb and O sites by Eu3+ and Mn2+ substitutions was manifested in the nonuniform variance of the tetragonality (c/a), the large microstrain, and the detriment of crystallinity observed.

Copyright

Corresponding author

a) Address all correspondence to this author at Departamento de Ingeniería Metalurgia y de Materiales, Universidad de Antioquia, calle 67, 53-108, Bloque 18 of 240, Ciudad Universitaria-Medellin, Colombia.

References

Hide All
1.Ueda, I., Jpn. J. Appl. Phys. 11(4), 450 (1972).
2.Yamashita, Y., Yokoyama, K., Honda, H., and Okuma, H., Jpn. J. Appl. Phys. 22(Suppl. 20–4), 183 (1981).
3.Takeuchi, H., Jyomura, S., Yamamoto, E., and Ito, Y., J. Acoust. Soc. Am. 72(4), 1114 (1982).
4.Takeuchi, H., Jyomura, S., Nakaya, C., and Ishikawa, Y., Jpn. J. Appl. Phys. 22(Suppl. 22–2), 166 (1983).
5.Durán, P., Fdez, J.F., Capel, F., Moure, C., J. Mater. Sci. 23, 4463 (1988).
6.Durán, G.P., Fdez, J.F., Capel, F., Moure, C., J. Mater. Sci. 24, 447 (1989).
7.Pérez Martínez, O., Calderón Piñar, F., Pénton, A., Suaste Gómez, E., Rivera Cruz, M., Leccabue, F., Bocelli, G., and Watts, B.E., Rev. Mex. Fís. 41(1), 85 (1995).
8.Pérez-Martínez, O., Calderón Piñar, F., Leccabue, F., and Watts, E.. Proc. Euromat 95, Conf. Ed. AIM (Milano, Italy, 1995), p. 529.
9.Subbarao, E.C., McQuarrie, M.C., and Buessem, , J. Appl. Phys. 28, 1194 (1957).
10.Mendiola, J. and Pardo, L., Ferroelectrics 54, 199 (1984).
11.Popovici, G. and Nicolau, P., J. Mater. Sci. Lett. 10, 379 (1991).
12.Li, S., Huang, C-Y., Bhalla, A.S., and Cross, L.E., ISAF 1992 Proc. 401 (1992).
13.Zeng, Y.W., Xue, W.R., and Fu, G.F., J. Mater. Sci. 26, 4293 (1991).
14.Zhong, W.L., Wang, Y.G., Yue, S.B., and Zhang, P.L., Solid State Commun. 90(6), 383 (1994).
15.Cullity, B.D., Elements of X-Ray Diffraction, 2nd ed. (Addison Wesley, 1978), pp. 285290 and Appendix 12 p. 573.
16.IRE Standards on Piezoelectric Crystals, 49, 1161 (1961).
17.Onoe, M., Tiersten, H., and Meitzler, A.H.. J. Acoust. Soc. Am. 35(1), 36 (1963).
18.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).
19.Izaki, T., Haneda, H., Watanabe, A., Uchida, Y., Tanaka, J., and Shirasaki, S., Jpn. J. Appl. Phys. 31, 3045 (1992).
20.Izaki, T., and Watanabe, A., Fourth Euro Ceramics, edited by Gusmano, G., Traversa, E. 5, 33 (1995).
21.Landolt-Börnstein, , in Ferroelectric and Related Substances, Subvolume a: Oxides, New Series, Group III: Crystal and Solid State Physics, Vol. 16, edited by Hellwege, K.H. and Hellwege, A.M. (Springer-Verlag, Berlin, 1981). p. 79.
22.Rossetti, G.A., Cross, L.E., and Cline, J.P., J. Mater. Sci. 30, 24 (1995).
23.Pérez Martínez, O., Saniger, J.M., Torres García, E., Flores, J.O., Calderon Piñar, F., Llópiz, J.C., and Peláiz Barranco, A., J. Mater. Sci. Lett. 16, 1161 (1997).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed