Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T01:08:59.827Z Has data issue: false hasContentIssue false

Electrodeposition of diamondlike carbon films on nickel substrates

Published online by Cambridge University Press:  31 January 2011

Alex Minhua Chen
Affiliation:
Department of Chemistry, University of North Texas, Denton, Texas 76203
Charoendee Pingsuthiwong
Affiliation:
Department of Chemistry, University of North Texas, Denton, Texas 76203
Teresa Diane Golden*
Affiliation:
Department of Chemistry, University of North Texas, Denton, Texas 76203
*
a)Address all correspondence to this author. e-mail: tgolden@unt.edu
Get access

Abstract

Diamondlike carbon (DLC) films were electrodeposited on nickel substrates from a solution of acetylene in liquid ammonia at low temperature and low potential using a three-electrode cell. Raman spectra showed a shoulder D peak at 1365 cm−1 and a broad G peak at 1558 cm−1 for the films, indicating an sp3 and sp2 carbon mixture. The presence of a 1230 cm−1 peak also indicated some four-fold-coordinated bonds of microcrystalline diamond. Fitting of the peaks in the Raman spectra specified the electrodeposited films were hydrogenated amorphous alloys, a-C:H. X-ray photoelectron spectra also pointed to the films containing a mixture of sp3 and sp2 carbon. Fourier transform infrared spectra of the electrodeposited films had C-H stretching vibrations, which is consistent with hydrogenated DLC films.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kuramato, K., Domoto, Y., Hirano, H., Kiyama, S., and Tsuda, S., Appl. Surf. Sci. 113, 227 (1997).Google Scholar
2.Meunier, C., Tomasella, E., Vives, S., and Mikhailov, S., Diamond Relat. Mater. 10, 1491 (2001).CrossRefGoogle Scholar
3.Wang, D., Chang, C., and Ho, W., Thin Solid Films 355, 246 (1996).Google Scholar
4.Namba, Y., J. Vac. Sci. Technol. A 10, 3368 (1992).Google Scholar
5.Suzuki, T., Manita, Y., Yamazaki, T., Wada, S., and Noma, T., J. Mater. Sci. 30, 2067 (1995).Google Scholar
6.Suzuki, T., Noma, T., Wada, S., Yamazaki, T., Manita, Y., and Yanai, T., J. Mater. Sci. 31, 3743 (1996).CrossRefGoogle Scholar
7.Wang, H., Shen, M., Ning, Z., Ye, C., Cao, C., Dang, H., and Zhu, H., Appl. Phys. Lett. 69, 1074 (1996).Google Scholar
8.Wang, H., Shen, M., Ning, Z., Ye, C., and Zhu, H., J. Mater. Res. 12, 3102 (1997).CrossRefGoogle Scholar
9.Jiu, J., Cai, K., Fu, Q., Cao, C., and Zhu, H., Mater. Lett. 41, 63 (1999).Google Scholar
10.Fu, Q., Jiu, J., Wang, H., Cao, C., and Zhu, H., Chem. Phys. Lett. 301, 87 (1999).Google Scholar
11.Jiu, J., Wang, H., Cai, K., Fu, Q., Cao, C., and Zhu, H., Mater. Res. Bull. 34 (10/11), 1501 (1999).Google Scholar
12.Jiu, J., Wang, H., Cao, C., and Zhu, H., J. Mater. Sci. 34, 5205 (1999).CrossRefGoogle Scholar
13.Fu, Q., Jiu, J., Cao, C., Wang, H., and Zhu, H., Surface Coatings Technol. 124, 196 (2000).Google Scholar
14.Wang, H., Kiyota, H., Miyo, T., Kitaguchi, K., Shiga, T., Kurosu, T., Zhu, H., and Iida, M., Diamond Relat. Mater. 9, 1307 (2000).CrossRefGoogle Scholar
15.Cao, C., Zhu, H., and Wang, H., Thin Solid Films, 368, 203 (2000).Google Scholar
16.Guo, D., Cai, K., Li, L., and Zhu, H., Chem. Phys. Lett. 325, 499 (2000).Google Scholar
17.Cai, K., Guo, D., Huang, Y., and Zhu, H., Appl. Phys. A 71, 227 (2000).Google Scholar
18.Cai, K., Guo, D., Huang, Y., and Zhu, H., Surf. Coatings Technol. 130, 266 (2000).Google Scholar
19.Guo, D., Cai, K., Li, L., Huang, Y., Gui, Z., and Zhu, H., Chem. Phys. Lett. 329, 346 (2000).Google Scholar
20.Wang, H. and Yoshimura, M., Chem. Phys. Lett. 348, 7 (2001).Google Scholar
21.Novikov, V.P. and Dymont, V.P., Tech. Phys. Lett. 22, 283 (1996).Google Scholar
22.Novikov, V.P. and Dymont, V.P., Appl. Phys. Lett. 70, 200 (1997).Google Scholar
23.Novikov, V.P. and Dymont, V.P., Tech. Phys. Lett. 23, 350 (1997).Google Scholar
24.Sarkar, P. and Nicholson, P.S., J. Am. Ceram. Soc. 79, 1987 (1996).Google Scholar
25.Lifshitz, Y., Diamond Relat. Mater. 8, 1659 (1999).Google Scholar
26.Tuinstra, F. and Koenig, J.L., Chem. Phys. 53, 1126 (1970).Google Scholar
27.Beeman, D., Silverman, J., Lynds, R., and Anderson, M.R., Phys. Rev. B 30, 870 (1984).CrossRefGoogle Scholar
28.Dillon, R.O. and Woollam, J.A., Phys. Rev. B 29, 3482 (1984).CrossRefGoogle Scholar
29.Robertson, J., Mater. Sci. Eng. R 271, 1 (2002).Google Scholar
30.Marchon, B., Heiman, N., Khan, M.R., Lautie, A., Ager, J.W. III , and Veirs, D.K., J. Appl. Phys. 69, 5750 (1991).Google Scholar
31.Ferrari, A.C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).Google Scholar
32.Kohier, T., Frauenhein, T., and Jungnickel, G., Phys. Rev. B 52, 729 (1995).Google Scholar
33.Li, F. and Lannin, J.S., Appl. Phys Lett. 61, 2116 (1992).CrossRefGoogle Scholar
34.Tamor, M.A. and Vassel, W.C., J. Appl. Phys 76, 3823 (1994).Google Scholar
35.Koidi, P., Wagner, C., Dischler, B., Wagner, J., and Ramsteiner, M., Mater. Sci. Forum 52, 4 (1990).Google Scholar
36.Gonon, P., Gheeraert, E., Deneuvile, A., Fontaine, F., Abello, L., and Luazeau, G., J. Appl. Phys. 12, 7509 (1995).Google Scholar
37.Popovici, G., Chao, C.H., Prelas, M.A., Charlson, E.J., and Meese, J.M., J. Mater. Res. 10, 2011 (1996).Google Scholar
38.Rzepka, E., Lusson, A., Levy-Clement, C., Kumar, M., Mukhopadhyay, K., and Sharon, M., Diamond Relat. Mater. 8, 481 (1999).Google Scholar
39.Schafer, J., Ristein, J., Graupner, R., Ley, L., Stephan, U., Frauenheim, Th., Veerasamy, V.S., Armaratunga, G.A.J., Weiler, M., and Ehrhardt, H., Phys. Rev. B 53, 7762 (1996).Google Scholar
40.Socrates, G., Infrared Characteristics Group Frequencies, 2nd ed. (Wiley, New York, 1994), p. 35.Google Scholar
41.Demortier, A. and Bard, A.J., J. Am. Chem. Soc. 95, 3495 (1973).Google Scholar
42.Uribe, F.A., Sharp, P.R., and Bard, A.J., J. Electroanal. Chem. 152, 173 (1983).Google Scholar
43.Hnizda, V.F. and Kraus, C.A., J. Am. Chem. Soc. 71, 1566 (1949).Google Scholar
44.Bombra, G. and Troyli, M., J. Electroanal. Chem. 5, 379 (1963).Google Scholar
45.Chen, A.M., Pingsuthiwong, C., and Golden, T.D. (2002, unpublished).Google Scholar
46.Pingsuthiwong, C. and Golden, T.D. (unpublished).Google Scholar