Skip to main content Accessibility help
×
Home

Effects of rare-earth oxide and alumina additives on thermal conductivity of liquid-phase-sintered silicon carbide

  • You Zhou (a1), Kiyoshi Hirao (a1), Yukihiko Yamauchi (a1) and Shuzo Kanzaki (a1)

Abstract

SiC ceramics were prepared from a β–SiC powder doped with two different sintering additives—a mixture of La2O3 and Y2O3 and a mixture of Al2O3 and Y2O3—by hot pressing and annealing. Their microstructures, phase compositions, lattice oxygen contents, and thermal conductivities were evaluated. The SiC doped with rare-earth oxides attained thermal conductivities in excess of 200 W/(m K); however, the SiC doped with additives containing alumina had thermal conductivities lower than 71 W/(m K). The high thermal conductivity of the rare-earth-oxide-doped SiC was attributed to the low oxygen content in SiC lattice, high SiC–SiC contiguity, and lack of β– to α–SiC polytypic transformation. The low thermal conductivity of the alumina-doped SiC was attributed to the point defects resulting from the dissolution of Al2O3 into SiC lattice and the occurrence of polytypic transformation.

Copyright

References

Hide All
Prochazka, S., in Special Ceramics 6, edited by Popper, P. (British Ceramic Research Association, Stoke on Trent, U.K., 1975), pp. 171181.
Tanaka, H., in Silicon Carbide Ceramics 1, edited by Somiya, S. and Inomata, Y. (Elsevier, New York, 1991), pp. 213238.
Padture, N.P., J. Am. Ceram. Soc. 77, 519 (1994).
Kim, Y-W., Mitomo, M., and Hirotsuru, H., J. Am. Ceram. Soc. 78, 3145 (1995).
Sciti, D. and Bellosi, A., J. Mater. Res. 16, 806 (2001).
Rixecker, G., Wiedmann, I., Rosinus, A., and Aldinger, F., J. Eur. Ceram. Soc. 21, 1013 (2001).
Zhou, Y., Hirao, K., Toriyama, M., Yamauchi, Y., and Kanzaki, S., J. Am. Ceram. Soc. 84, 1642 (2001).
Zhou, Y., Hirao, K., Yamauchi, Y., and Kanzaki, S., J. Eur. Ceram. Soc. 22, 2689 (2002).
Cao, J.J., MoberlyChan, W.J., Jonghe, L.C. De, Gilbert, C.J., and Ritchie, R.O., J. Am. Ceram. Soc. 79, 461 (1996).
Tanaka, H. and Zhou, Y., J. Mater. Res. 14, 518 (1999).
Zhou, Y., Tanaka, H., Otani, S., and Bando, Y., J. Am. Ceram. Soc. 82, 1959 (1999).
Slack, G.A., J. Phys. Chem. Solids 34, 321 (1973).
Ogihara, S., Maeda, K., Takeda, Y., and Nakamura, K., J. Am. Ceram. Soc. 68, C-16 (1985).
Takeda, Y., Am. Ceram. Soc. Bull. 67, 1961 (1988).
Sakai, T. and Aikawa, T., J. Am. Ceram. Soc. 71, C-7 (1988).
Liu, D.M. and Lin, B.W., Ceram. Intl. 22, 407 (1996).
Volz, E., Roosen, A., Hartung, W., and Winnacker, A., J. Eur. Ceram. Soc. 21, 2089 (2001).
Zhan, G-D., Mitomo, M., and Mukherjee, A.K., J. Mater. Res. 17, 2327 (2002).
Zhan, G-D., Mitomo, M., Xie, R-J, and Mukherjee, A.K., J. Am. Ceram. Soc. 84, 2448 (2001).
Tanaka, H. and Iyi, N., J. Ceram. Soc. Jpn. 101, 1313 (1993).
Japanese Industrial Standards Committee, Testing Methods of Thermal Diffusivity, Specific Heat Capacity, and Thermal Conductivity for High Performance Ceramics by Laser Flash Methods, JIS R 1611–1991 (Japanese Standard Association, Tokyo, Japan, 1991).
Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., J. Appl. Phys. 32, 1679 (1961).
Kitayama, M., Hirao, K., Tsuge, A., Watari, K., Toriyama, M., and Kanzaki, S., J. Am. Ceram. Soc. 83, 1985 (2000).
Sigl, L.S. and Kleebe, H.J., J. Am. Ceram. Soc. 76, 773 (1993).
Slack, G.A., Tanzilli, R.A., Pohl, R.O., and Vandersande, J.W., J. Phy. Chem. Solids 48, 641 (1987).
Virkar, A.V., Jackson, T.B., and Cutler, R.A., J. Am. Ceram. Soc. 72, 2031 (1989).
Jackson, T.B., Virkar, A.V., More, K.L., Dinwiddie, R.B., Jr., and R.A. Cutler, J. Am. Ceram. Soc. 80, 1421 (1997).
Hirao, K., Watari, K., Hayashi, H., and Kitayama, M., MRS Bull. 26, 451 (2001).
Abeles, B., Phys. Rev. 131, 1906 (1963).
Baranda, P. Sainz de, Knudsen, A.K., and Ruh, E., J. Am. Ceram. Soc. 76, 1761 (1993).
Hirosaki, N., Okamoto, Y., Ando, M., Munakata, F., and Akimune, Y., J. Am. Ceram. Soc. 79, 2878 (1996).
Klein, P.H. and Croft, W.J., J. Appl. Phys. 38, 1603 (1967).
Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 636.
Sigl, L.S., J. Eur. Ceram. Soc. 23, 1115 (2003).
Tajima, Y. and Kingery, W. D., J. Am. Ceram. Soc. 65, C-27 (1982).
Jepps, N.W. and Page, T.F., in Progress in Crystal Growth and Characterization, Vol. 7, edited by Krishna, P. (Pergamon, Oxford, U.K., 1983), pp. 259307.
Inomata, Y., Mitomo, M., Inoue, Z., and Tanaka, H., J. Ceram. Soc. Jpn. 77, 130 (1969).
Ogbuji, L.U., Mitchell, T.E., and Heuer, A.H., J. Am. Ceram. Soc. 64, 91 (1981).
Seo, W-E., Pai, C-H., Koumoto, K., and Yanagida, H., J. Ceram. Soc. Jpn. 100, 227 (1992).
Pujar, V.V. and Cawley, J.D., J. Am. Ceram. Soc. 78, 774 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed