Skip to main content Accessibility help
×
Home

The effects of intergranular sliding on the fracture toughness of nanocrystalline materials with finest grains

  • Yunbo Wu (a1), Jianqiu Zhou (a2), Hongxi Liu (a3), Xuming Pang (a3), Shu Zhang (a3), Ying Wang (a3), Lu Wang (a3) and Shuhong Dong (a3)...

Abstract

A new physical model of plastic deformation in nanocrystalline (NC) materials with finest grains (whose grain size is 2–4 nm) is suggested and theoretically described. The model represents the effect of the finest grains located at triple junctions on the fracture toughness of NC materials in the case that there are multiple dislocations pile-up at grain boundaries (GBs). The maximum number n of the pile-up dislocations is determined by both the capacity of dislocations emitting associated with the crack propagation and the capacity of dislocations pile-up due to the existence of the finest grains. The calculation indicates that the parameter n increases with increment of the grain size and decreases with the finest grain size increasing. The results theoretically reveal that the triple junctions with finest grains can significantly improve the fracture toughness of NC materials compared with the normal triple junctions in wide ranges of their structural parameters.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: zhouj@njut.edu.cn

References

Hide All
1. Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A., Koch, C.C., and Carolina, N.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005).
2. Shan, Z., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., and Mao, S.X.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).
3. Mukherjee, A.K.: An examination of the constitutive equation for elevated temperature plasticity. Mater. Sci. Eng. A 322, 1 (2002).
4. Koch, C.C.: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).
5. Van Swygenhoven, H. and Spaczer, M.: Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni. Acta Mater. 47, 3117 (1999).
6. Van Swygenhoven, H. and Derlet, P.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).
7. Monk, J., Hyde, B., and Farkas, D.: The role of partial grain boundary dislocations in grain boundary sliding and coupled grain boundary motion. J. Mater. Sci. 41, 7741 (2006).
8. Yang, F. and Yang, W.: Brittle versus ductile transition of nanocrystalline metals. Int. J. Solids Struct. 45, 3897 (2008).
9. Yang, F. and Yang, W.: Crack growth versus blunting in nanocrystalline metals with extremely small grain size. J. Mech. Phys. Solids 57, 305 (2009).
10. Gutkin, M.Y., Ishizaki, T., Kuramoto, S., Ovid’ko, I.A., and Skiba, N.V.: Giant faults in deformed gum metal. Int. J. Plasticity 24, 1333 (2008).
11. Zizak, I., Darowski, N., Klaumünzer, S., Schumacher, G., Gerlach, J., and Assmann, W.: Ion-beam-induced collective rotation of nanocrystals. Phys. Rev. Lett. 101, 065503 (2008).
12. Joshi, S.P. and Ramesh, K.T.: Rotational diffusion and grain size dependent shear instability in nanostructured materials. Acta Mater. 56, 282 (2008).
13. Ovid'ko, I.A. and Sheinerman, A.G.: Special rotational deformation in nanocrystalline metals and ceramics. Scripta Mater. 59, 119 (2008).
14. Morozov, N.F., Ovid'ko, I.A., Sheinerman, A.G., and Aifantis, E.C.: Special rotational deformation as a toughening mechanism in nanocrystalline solids. J. Mech. Phys. Solids 58, 1088 (2010).
15. Liu, Y., Zhou, J., Shen, T.D., and Hui, D.: Grain rotation dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng. A 528, 7684 (2011).
16. Li, X., Zhou, J., Zhu, R., Liu, Y., and Jiang, H.: Grain rotation dependent non-homogeneous deformation behavior in nanocrystalline materials. Mater. Sci. Eng. A 527, 5677 (2010).
17. Asaro, A.J., Krysl, P., and Kad, B.: Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83,733 (2003).
18. Ovid’ko, I.A. and Sheinerman, A.G.: Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58, 5286 (2010).
19. Latapie, A. and Farkas, D.: Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe. Phys. Rev. B 69, 134110 (2004).
20. Xu, X., Nishimura, T., Hirosaki, N., Xie, R., Yamamoto, Y., and Tanaka, H.: Superplastic deformation of nano-sized silicon nitride ceramics. Acta Mater. 54, 255 (2006).
21. Fedorov, A.A., Gutkin, M.Y., and Ovid'ko, I.A.: Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 51, 887 (2003).
22. Schiøtz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003).
23. Zheng, C. and Zhang, Y.W.: Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature. Mater. Sci. Eng. A 423, 97 (2006).
24. Satta, A., Pisanu, E., Colombo, L., and Cleri, F.: Microstructure evolution at a triple junction in polycrystalline materials. J. Phys. Condens. Matter 14, 13003 (2002).
25. Gleiter, H.: Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today? Acta Mater. 56, 5875 (2008).
26. Hu, L., Huo, R., Zhou, J., Wang, Y., and Zhang, S.: The effects of the finest grains on the mechanical behaviours of nanocrystalline materials. J. Nanopart. Res. 14, 677 (2012).
27. Liu, Y., Zhou, J., Shen, T., and Hui, D.: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26, 1734 (2011).
28. Huang, J.Y., Zhu, Y.T., Jiang, H., and Lowe, T.C.: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497 (2001).
29. Valiev, R.Z.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).
30. Bobylev, S.V., Mukherjee, A.K., Ovid, I.A., and Sheinerman, A.G.: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plasticity 26, 1629 (2010).
31. Li, H. and Ebrahimi, F.: Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84, 4307 (2004).
32. Bobylev, S.V., Mukherjee, A.K., and Ovid’ko, I.A.: Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics. Scripta Mater. 60, 36 (2009).
33. Hirth, J.P. and Lothe, J.: Theory of Dislocations (Krieger Publishing Company, Florida, 1982).
34. Du, N., Bower, A., Krajewski, P., and Taleff, E.: The influence of a threshold stress for grain boundary sliding on constitutive response of polycrystalline Al during high temperature deformation. Mater. Sci. Eng. A 494, 86 (2008).
35. Eshelby, J., Frank, F., and Nabarro, F.: XLI. The equilibrium of linear arrays of dislocations. Philos. Mag. 42, 351 (1951).
36. Lin, I.H. and Thomson, R.: Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34, 187 (1986).
37. Rice, J.R. and Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 (1974).
38. Han, W.Z., Zhang, Z.F., Wu, S.D., and Li, S.X.: Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals. Philos. Mag. 88, 3011 (2008).

Keywords

The effects of intergranular sliding on the fracture toughness of nanocrystalline materials with finest grains

  • Yunbo Wu (a1), Jianqiu Zhou (a2), Hongxi Liu (a3), Xuming Pang (a3), Shu Zhang (a3), Ying Wang (a3), Lu Wang (a3) and Shuhong Dong (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed