Skip to main content Accessibility help
×
Home

Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting

  • Yanlei Li (a1), Guohua Wu (a1), Antao Chen (a1), H.R. Jafari Nodooshan (a1), Wencai Liu (a2), Yingxin Wang (a2) and Wenjiang Ding (a3)...

Abstract

The microstructures, high-temperature mechanical properties, and fracture behavior of Mg–Gd–Y–Zr alloy components produced by low-pressure sand casting with different Gd and Zr contents, have been investigated. The ultimate tensile strength (UTS), tensile yield strength, and total elongation (EL) were measured within the 25–300 °C range. At the same temperatures, the UTS and yield strength (YS) of the T6 treated Mg–xGd–3Y–0.5Zr alloys increased with Gd content increasing from 9 to 11%, which was attributed to the improvement of precipitation strengthening. Increasing the Zr content from 0.3 to 0.5% leads to dramatic decrease in grain size and improved tensile properties of T6 treated Mg–10Gd–3Y–yZr alloys which is considered to be due to grain-boundary strengthening. With the increase of tensile temperature, both UTS and YS of the T6 treated Mg–xGd–3Y–yZr alloys initially increase and then decrease. The β precipitates provide important strengthening sources in experimental alloys, especially at elevated temperatures. The Mg–10Gd–3Y–0.5Zr alloy shows good combination of strength and EL within the 25–300 °C range.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: ghwu@sjtu.edu.cn

References

Hide All
1.Mordike, B.L. and Ebert, T.: Magnesium: Properties-application-potential. Mater. Sci. Eng., A 302(1), 37 (2001).
2.Luo, A.A.: Magnesium casting technology for structural applications. J. Magnesium Alloys 1(1), 2 (2013).
3.Carter, J.T., Melo, A.R., Savic, V., Hector, L.G. Jr., and Krajewski, P.E.: Structural evaluation of an experimental aluminum/magnesium decklid. SAE Int. J. Mater. Manuf. 4(1), 166 (2011).
4.Hirai, K., Somekawa, H., Takigawa, Y., and Higashi, K.: Effect of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater. Sci. Eng., A 403(1–2), 276 (2005).
5.kondori, B. and Mahmudi, R.: Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy. Mater. Sci. Eng., A. 527(7–8), 2014 (2010).
6.Mahmudi, R., Kabirian, F., and Nematollahi, Z.: Microstructure stability and high-temperature mechanical properties of AZ91 and AZ91+2RE magnesium alloys. Mater. Des. 32(5), 2583 (2011).
7.Hono, K., Mendis, C.L., Sasaki, T.T., and Oh-ishi, K.: Towards the development of heat-treatable high-strength wrought Mg alloys. Scr. Mater. 60(7), 710 (2010).
8.Antoniswamy, A.R., Taleff, E.M., Hector, L.G. Jr., and Carter, J.T.: Plastic deformation and ductility of magnesium AZ31B-H24 alloy sheet from 22 to 450 °C. Mater. Sci. Eng., A 631, 1 (2015).
9.Nie, J.F. and Muddle, B.C.: Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C. Scr. Mater. 40(10), 1089 (1999).
10.Anyanwu, I.A., Kamado, S., and Kojima, Y.: Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys. Mater. Trans. 42(7), 1206 (2001).
11.He, S.M.: Study on the microstructure evolution, properties and fracture behavior of Mg-Gd-Y-Zr (Ca) alloys. Ph. D. Thesis School of Materials Science and Engineering, Shanghai Jiao Tong University, 2007.
12.Mu, Y.L., Wang, Q.D., Hu, M.L., Janik, V., and Yin, D.D.: Elevated-temperature impact toughness of Mg-(Gd,Y)-Zr alloy. Scr. Mater. 68(11), 885 (2013).
13.He, S.M., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., and Ding, W.J.: Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 421(1–2), 309 (2006).
14.He, S.M., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., and Ding, W.J.: Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloys Compd. 427(1), 316 (2007).
15.Janik, V., Yin, D.D., Wang, Y.D., He, S.M., Chen, C.J., Chen, Z., and Boehlert, C.J.: The elevated-temperature mechanical behavior of peak-aged Mg-10Gd-3Y-0.4Zr alloy. Mater. Sci. Eng., A. 528(7–8), 3105 (2011).
16.Mordike, B.L.: Creep-resistant magnesium alloys. Mater. Sci. Eng., A 324(1–2), 103 (2002).
17.Du, W.B., Wu, Y.F., Nie, Z.R., Su, X.K., and Zuo, T.Y.: Effects of rare earth and alkaline earth on magnesium alloys and their applications status. Rare Met. Mater. Eng. 35, 1345 (2013).
18.Li, J.L., Ma, Y.Q., Chen, R.S., and Ke, W.: Effects of shrinkage porosity on mechanical properties of a sand cast Mg-Y-RE (WE54) alloy. Mater. Sci. Forum 747748, 390 (2013).
19.Wang, W., Huang, Y.G., Wu, G.H., Wang, Q.D., Sun, M., and Ding, W.J.: Influence of flux containing YCl3 additions on purifying effectiveness and properties of Mg-10Gd-3Y-0.5Zr alloy. J. Alloys Compd. 480(2), 386 (2009).
20.Liu, W.C., Jiang, L.K., Cao, L., Mei, J., Wu, G.H., Zhang, S., Xiao, L., Wang, S.H., and Ding, W.J.: Fatigue behavior and plane-strain fracture toughness of sand-cast Mg-10Gd-3Y-0.5Zr magnesium alloy. Mater. Des. 59, 466 (2014).
21.Edler, F.J., Lagrené, G., and Siepe, R.: Thin-walled Mg structural parts by a low-pressure sand casting process. In Magnesium Alloys and Their Applications, Kainer, K.U. ed.; WILEY-VCH Verlag GmbH: Weinheim, 2000; pp. 553557.
22.Jafari Nodooshan, H.R., Liu, W.C., Wu, G.H., Rao, Y., Zhou, C.X., He, S.P., Ding, W.J., and Mahmudi, R.: Effect of Gd on microstructure and mechanical properties of Mg-Gd-Y-Zr alloys under peak-aged condition. Mater. Sci. Eng., A 615, 79 (2014).
23.Liang, S.Q., Guan, D.K., Tan, X.P., Chen, L., and Tang, Y.: Effect of isothermal aging on the microstructure and properties of as-cast Mg-Gd-Y-Zr alloy. Mater. Sci. Eng., A. 528(3), 1589 (2011).
24.Wang, J., Meng, J., Zhang, D.P., and Tang, D.X.: Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys. Mater. Sci. Eng., A 456(1–2), 78 (2007).
25.Gao, L., Chen, R.S., and Han, E.H.: Effect of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 481(1–2), 379 (2009).
26.Jiang, L.K., Liu, W.C., Wu, G.H., and Ding, W.J.: Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg-Gd-Y-Zr alloy. Mater. Sci. Eng., A 612, 293 (2014).
27.Sun, M., Wu, G.H., Wang, W., and Ding, W.J.: Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Ymagnesium alloy. Mater. Sci. Eng., A 523(1–2), 145 (2009).
28.Fang, X.Y., Yi, D.Q., Nie, J.F., Zhang, X.J., Wang, B., and Xiao, L.R.: Effect of Zr, Mn and Sc additions on the grain size of Mg-Gd alloy. J. Alloys Compd. 470(1–2), 311 (2009).
29.Chang, J.W., Guo, X.W., He, S.M., Fu, P.H., Ping, L.M., and Ding, W.J.: Investigation of the corrosion for Mg-xGd-3Y-0.4Zr(x=6, 8, 10, 12 wt %) alloys in a peak-aged condition. Corros. Sci. 50(1), 166 (2008).
30.Zheng, K.Y., Dong, J., Zeng, X.Q., and Ding, W.J.: Effect of precipitation aging on the fracture behavior of Mg-11Gd-2Nd-0.4Zr cast alloy. Mater. Charact. 59(7), 857 (2008).
31.Li, D.Q., Wang, Q.D., and Ding, W.J.: Characterization of phase in Mg-4Y-4Sm-0.5Zr alloy processed by heat treatment. Mater. Sci. Eng., A 428(1–2), 295 (2006).
32.Qian, M. and Das, A.: Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. Scr. Mater. 54(5), 881 (2006).
33.Emley, E.E.: Principles of Magnesium Technology (Pergamon. Press, Pergamon, Oxford, England, 1966); p. 126.
34.Peng, Z.K., Zhang, X.M., Chen, J.M., Xiao, Y., and Jiang, H.: Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium. Mater. Sci. Technol. 21(6), 722 (2005).
35.Nie, J.F.: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48(8), 109 (2003).
36.Peng, Q.M., Wu, Y.M., Fang, D.Q., Meng, J., and Wang, L.M.: Mircostructure and properties of Mg-7Gd alloy containing Y. J. Alloys Compd. 430(1–2), 250 (2007).
37.APPs, P.J., Karimzadeh, H., King, J.F., and Lorimer, G.W.: Precipitation reactions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scr. Mater. 48(8), 1023 (2003).
38.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R: First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 58(17), 5704 (2010).
39.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R: Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data. Acta Mater. 59(14), 5652 (2011).
40.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R: Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 60(5), 2350 (2012).
41.Zhang, K., Li, X.G., Li, Y.J., and Ma, M.L.: Effect of Gd content on microstructure and mechanical properties of Mg-Y-RE-Zr alloys. Trans. Nonferrous Met. Soc. China 18(1), 12 (2008).
42.Koike, J., Ohyama, R., Kobayashi, T., Suzuki, M., and Maruyama, K.: Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater. Trans. 44(4), 445 (2003).
43.Yin, D.D., Wang, Q.D., Gao, Y., Chen, C.J., and Zheng, J.: Effects of heat treatments on microstructure and mechanical properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. J. Alloys Compd. 509(5), 1396 (2011).
44.Gao, L., Chen, R.S., and Han, E.H.: Fracture behavior of high strength Mg-Gd-Y-Zr magnesium alloy. Trans. Nonferrous Met. Soc. China 20(7), 1217 (2010).
45.Barnett, M.R.: Twinning and ductility of magnesium alloys part I: “Tension” twin. Mater. Sci. Eng., A. 464(1–2), 1 (2007).
46.Shi, X.Y., Luo, A.A., Sutton, S.C., Zeng, L., Wang, S.Y., Zeng, X.Q., Li, D.J., and Ding, W.J.: Twinning behavior and lattice rotation in a Mg-Gd-Y-Zr alloy under ballistic impact. J. Alloys Compd. 650, 622 (2015).

Keywords

Related content

Powered by UNSILO

Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting

  • Yanlei Li (a1), Guohua Wu (a1), Antao Chen (a1), H.R. Jafari Nodooshan (a1), Wencai Liu (a2), Yingxin Wang (a2) and Wenjiang Ding (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.