Skip to main content Accessibility help

Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting

  • Yanlei Li (a1), Guohua Wu (a1), Antao Chen (a1), H.R. Jafari Nodooshan (a1), Wencai Liu (a2), Yingxin Wang (a2) and Wenjiang Ding (a3)...


The microstructures, high-temperature mechanical properties, and fracture behavior of Mg–Gd–Y–Zr alloy components produced by low-pressure sand casting with different Gd and Zr contents, have been investigated. The ultimate tensile strength (UTS), tensile yield strength, and total elongation (EL) were measured within the 25–300 °C range. At the same temperatures, the UTS and yield strength (YS) of the T6 treated Mg–xGd–3Y–0.5Zr alloys increased with Gd content increasing from 9 to 11%, which was attributed to the improvement of precipitation strengthening. Increasing the Zr content from 0.3 to 0.5% leads to dramatic decrease in grain size and improved tensile properties of T6 treated Mg–10Gd–3Y–yZr alloys which is considered to be due to grain-boundary strengthening. With the increase of tensile temperature, both UTS and YS of the T6 treated Mg–xGd–3Y–yZr alloys initially increase and then decrease. The β precipitates provide important strengthening sources in experimental alloys, especially at elevated temperatures. The Mg–10Gd–3Y–0.5Zr alloy shows good combination of strength and EL within the 25–300 °C range.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Mordike, B.L. and Ebert, T.: Magnesium: Properties-application-potential. Mater. Sci. Eng., A 302(1), 37 (2001).
2.Luo, A.A.: Magnesium casting technology for structural applications. J. Magnesium Alloys 1(1), 2 (2013).
3.Carter, J.T., Melo, A.R., Savic, V., Hector, L.G. Jr., and Krajewski, P.E.: Structural evaluation of an experimental aluminum/magnesium decklid. SAE Int. J. Mater. Manuf. 4(1), 166 (2011).
4.Hirai, K., Somekawa, H., Takigawa, Y., and Higashi, K.: Effect of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater. Sci. Eng., A 403(1–2), 276 (2005).
5.kondori, B. and Mahmudi, R.: Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy. Mater. Sci. Eng., A. 527(7–8), 2014 (2010).
6.Mahmudi, R., Kabirian, F., and Nematollahi, Z.: Microstructure stability and high-temperature mechanical properties of AZ91 and AZ91+2RE magnesium alloys. Mater. Des. 32(5), 2583 (2011).
7.Hono, K., Mendis, C.L., Sasaki, T.T., and Oh-ishi, K.: Towards the development of heat-treatable high-strength wrought Mg alloys. Scr. Mater. 60(7), 710 (2010).
8.Antoniswamy, A.R., Taleff, E.M., Hector, L.G. Jr., and Carter, J.T.: Plastic deformation and ductility of magnesium AZ31B-H24 alloy sheet from 22 to 450 °C. Mater. Sci. Eng., A 631, 1 (2015).
9.Nie, J.F. and Muddle, B.C.: Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C. Scr. Mater. 40(10), 1089 (1999).
10.Anyanwu, I.A., Kamado, S., and Kojima, Y.: Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys. Mater. Trans. 42(7), 1206 (2001).
11.He, S.M.: Study on the microstructure evolution, properties and fracture behavior of Mg-Gd-Y-Zr (Ca) alloys. Ph. D. Thesis School of Materials Science and Engineering, Shanghai Jiao Tong University, 2007.
12.Mu, Y.L., Wang, Q.D., Hu, M.L., Janik, V., and Yin, D.D.: Elevated-temperature impact toughness of Mg-(Gd,Y)-Zr alloy. Scr. Mater. 68(11), 885 (2013).
13.He, S.M., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., and Ding, W.J.: Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 421(1–2), 309 (2006).
14.He, S.M., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., and Ding, W.J.: Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloys Compd. 427(1), 316 (2007).
15.Janik, V., Yin, D.D., Wang, Y.D., He, S.M., Chen, C.J., Chen, Z., and Boehlert, C.J.: The elevated-temperature mechanical behavior of peak-aged Mg-10Gd-3Y-0.4Zr alloy. Mater. Sci. Eng., A. 528(7–8), 3105 (2011).
16.Mordike, B.L.: Creep-resistant magnesium alloys. Mater. Sci. Eng., A 324(1–2), 103 (2002).
17.Du, W.B., Wu, Y.F., Nie, Z.R., Su, X.K., and Zuo, T.Y.: Effects of rare earth and alkaline earth on magnesium alloys and their applications status. Rare Met. Mater. Eng. 35, 1345 (2013).
18.Li, J.L., Ma, Y.Q., Chen, R.S., and Ke, W.: Effects of shrinkage porosity on mechanical properties of a sand cast Mg-Y-RE (WE54) alloy. Mater. Sci. Forum 747748, 390 (2013).
19.Wang, W., Huang, Y.G., Wu, G.H., Wang, Q.D., Sun, M., and Ding, W.J.: Influence of flux containing YCl3 additions on purifying effectiveness and properties of Mg-10Gd-3Y-0.5Zr alloy. J. Alloys Compd. 480(2), 386 (2009).
20.Liu, W.C., Jiang, L.K., Cao, L., Mei, J., Wu, G.H., Zhang, S., Xiao, L., Wang, S.H., and Ding, W.J.: Fatigue behavior and plane-strain fracture toughness of sand-cast Mg-10Gd-3Y-0.5Zr magnesium alloy. Mater. Des. 59, 466 (2014).
21.Edler, F.J., Lagrené, G., and Siepe, R.: Thin-walled Mg structural parts by a low-pressure sand casting process. In Magnesium Alloys and Their Applications, Kainer, K.U. ed.; WILEY-VCH Verlag GmbH: Weinheim, 2000; pp. 553557.
22.Jafari Nodooshan, H.R., Liu, W.C., Wu, G.H., Rao, Y., Zhou, C.X., He, S.P., Ding, W.J., and Mahmudi, R.: Effect of Gd on microstructure and mechanical properties of Mg-Gd-Y-Zr alloys under peak-aged condition. Mater. Sci. Eng., A 615, 79 (2014).
23.Liang, S.Q., Guan, D.K., Tan, X.P., Chen, L., and Tang, Y.: Effect of isothermal aging on the microstructure and properties of as-cast Mg-Gd-Y-Zr alloy. Mater. Sci. Eng., A. 528(3), 1589 (2011).
24.Wang, J., Meng, J., Zhang, D.P., and Tang, D.X.: Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys. Mater. Sci. Eng., A 456(1–2), 78 (2007).
25.Gao, L., Chen, R.S., and Han, E.H.: Effect of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 481(1–2), 379 (2009).
26.Jiang, L.K., Liu, W.C., Wu, G.H., and Ding, W.J.: Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg-Gd-Y-Zr alloy. Mater. Sci. Eng., A 612, 293 (2014).
27.Sun, M., Wu, G.H., Wang, W., and Ding, W.J.: Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Ymagnesium alloy. Mater. Sci. Eng., A 523(1–2), 145 (2009).
28.Fang, X.Y., Yi, D.Q., Nie, J.F., Zhang, X.J., Wang, B., and Xiao, L.R.: Effect of Zr, Mn and Sc additions on the grain size of Mg-Gd alloy. J. Alloys Compd. 470(1–2), 311 (2009).
29.Chang, J.W., Guo, X.W., He, S.M., Fu, P.H., Ping, L.M., and Ding, W.J.: Investigation of the corrosion for Mg-xGd-3Y-0.4Zr(x=6, 8, 10, 12 wt %) alloys in a peak-aged condition. Corros. Sci. 50(1), 166 (2008).
30.Zheng, K.Y., Dong, J., Zeng, X.Q., and Ding, W.J.: Effect of precipitation aging on the fracture behavior of Mg-11Gd-2Nd-0.4Zr cast alloy. Mater. Charact. 59(7), 857 (2008).
31.Li, D.Q., Wang, Q.D., and Ding, W.J.: Characterization of phase in Mg-4Y-4Sm-0.5Zr alloy processed by heat treatment. Mater. Sci. Eng., A 428(1–2), 295 (2006).
32.Qian, M. and Das, A.: Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. Scr. Mater. 54(5), 881 (2006).
33.Emley, E.E.: Principles of Magnesium Technology (Pergamon. Press, Pergamon, Oxford, England, 1966); p. 126.
34.Peng, Z.K., Zhang, X.M., Chen, J.M., Xiao, Y., and Jiang, H.: Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium. Mater. Sci. Technol. 21(6), 722 (2005).
35.Nie, J.F.: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48(8), 109 (2003).
36.Peng, Q.M., Wu, Y.M., Fang, D.Q., Meng, J., and Wang, L.M.: Mircostructure and properties of Mg-7Gd alloy containing Y. J. Alloys Compd. 430(1–2), 250 (2007).
37.APPs, P.J., Karimzadeh, H., King, J.F., and Lorimer, G.W.: Precipitation reactions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scr. Mater. 48(8), 1023 (2003).
38.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R: First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 58(17), 5704 (2010).
39.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R: Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data. Acta Mater. 59(14), 5652 (2011).
40.Yasi, J.A., Hector, L.G. Jr., and Trinkle, D.R: Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model. Acta Mater. 60(5), 2350 (2012).
41.Zhang, K., Li, X.G., Li, Y.J., and Ma, M.L.: Effect of Gd content on microstructure and mechanical properties of Mg-Y-RE-Zr alloys. Trans. Nonferrous Met. Soc. China 18(1), 12 (2008).
42.Koike, J., Ohyama, R., Kobayashi, T., Suzuki, M., and Maruyama, K.: Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater. Trans. 44(4), 445 (2003).
43.Yin, D.D., Wang, Q.D., Gao, Y., Chen, C.J., and Zheng, J.: Effects of heat treatments on microstructure and mechanical properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. J. Alloys Compd. 509(5), 1396 (2011).
44.Gao, L., Chen, R.S., and Han, E.H.: Fracture behavior of high strength Mg-Gd-Y-Zr magnesium alloy. Trans. Nonferrous Met. Soc. China 20(7), 1217 (2010).
45.Barnett, M.R.: Twinning and ductility of magnesium alloys part I: “Tension” twin. Mater. Sci. Eng., A. 464(1–2), 1 (2007).
46.Shi, X.Y., Luo, A.A., Sutton, S.C., Zeng, L., Wang, S.Y., Zeng, X.Q., Li, D.J., and Ding, W.J.: Twinning behavior and lattice rotation in a Mg-Gd-Y-Zr alloy under ballistic impact. J. Alloys Compd. 650, 622 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed