Skip to main content Accessibility help
×
Home

Effects of Elevated Temperature Annealing on the Structure and Hardness of Copper/niobium Nanolayered Films

  • A. Misra (a1) and R.G. Hoagland (a1)

Abstract

We investigated the effects of elevated temperature vacuum annealing on the morphological stability and hardness of self-supported, textured, polycrystalline Cu–Nb nanolayered films with individual layer thickness varying from 15 to 75 nm. Films with layer thickness greater than approximately 35 nm are found to resist layer pinch-off and spheroidization even after long annealing times at 700 °C, while films with layer thickness ∼15 nm exhibit layer pinch-off and evolve into an equiaxed grain microstructure. Nanoindentation measurements indicate almost no change in hardness after annealing for films that retain the layered morphology, in spite of the increase of in-plane grain dimensions. Significant decreases in hardness are noted for films that develop a coarsened equiaxed grain microstructure after annealing. The mechanism that leads to the development of a thermally stable nanolayered structure is analyzed. Also, the relative effects of in-plane grain size and layer thickness on the multilayer hardness are discussed.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: amisra@lanl.gov

References

Hide All
1Clemens, B.M., Kung, H. and Barnett, S.A.: Structure and strength of multilayers. MRS Bull. 24(2), 20 (1999).
2Misra, A. and Kung, H.: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3(4), 217 (2001).
3Phillips, M.A., Clemens, B.M. and Nix, W.D.: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51, 3171 (2003).
4Barnett, S.A., Madan, A., Kim, I. and Martin, K.: Stability of nanometer-thick layers in hard coatings. MRS Bull. 28(3), 169 (2003).
5Kung, H., Jervis, T.R., Hirvonen, J.P., Mitchell, T.E. and Nastasi, M.: High-temperature structural stability of MoSi2-based nanolayer composites. J. Vac. Sci. Technol., B 13, 1126 (1995).
6Lee, H.J., Kwon, K.W., Ryu, C. and Sinclair, R.: Thermal stability of a Cu/Ta multilayer: An intriguing interfacial reaction. Acta Mater. 47, 3965 (1999).
7Hong, S.I., Hill, M.A., Sakai, Y., Wood, J.T. and Embury, J.D.: On the stability of cold drawn, 2-phase wires. Acta Metall. Mater. 43, 3313 (1995).
8Kampe, J.C. Malzhan, Courtney, T.H. and Leng, Y.: Shape instabilities of plate-like structures. Acta Metall. 37, 1735 (1989).
9Sharma, G., Ramanujan, R.V. and Tiwari, G.P.: Instability mechanisms in lamellar microstructures. Acta Mater. 48, 875 (2000).
10Knoedler, H.L., Lucas, G.E. and Levi, C.G.: Morphological stability of copper-silver multilayer thin films at elevated temperatures. Metall. Mater. Trans. A. 34A, 1043 (2003).
11Josell, D., Coriell, S.R. and McFadden, G.B.: Evaluating the zero creep conditions for thin film and multilayer thin film specimens. Acta Metall. Mater. 43, 1987 (1995).
12Josell, D. and Spaepen, F.: Surfaces, interfaces, and changing shapes in multilayered films. MRS Bull. 24(2), 39 (1999).
13Josell, D., Carter, W.C. and Bonevich, J.E.: Stability of multilayer structures: Capillary effects. Nanostruct. Mater. 12, 387 (1999).
14Lewis, A.C., Josell, D. and Weihs, T.P.: Stability in thin film multilayers and microlaminates: The role of free energy, structure, and orientation at interfaces and grain boundaries. Scripta Mater. 48, 1079 (2003).
15Troche, P., Hoffmann, J., Heinemann, K., Hartung, F., Schmitz, G., Freyhardt, H.C., Rudolph, D., Thieme, J. and Guttmann, P.: Thermally driven shape instabilities of Nb/Cu multilayer structures: Instability of Nb/Cu multilayers. Thin Solid Films 353, 33 (1999).
16Zhai, Q., Kong, D., Morrone, A., and Ebrahimi, F.: Characterization of high strength Cu/Ag multilayered composites, in Electrochemical Synthesis and Modification of Materials, edited by And, P.C.ricacos, Corcoran, S.G., Delplancke, J-L., Moffat, T.P., and Searson, P.C. (Mater. Res. Soc. Symp. Proc. 451, Pittsburgh, PA, 1997) pp. 489494.
17Bobeth, M., Hecker, M., Pompe, W., Schneider, C.M., Thomas, J., Ullrich, A. and Wetzig, K.: Thermal stability of nanoscale Co/Cu multilayers, Z. Metallkde. 92, 810 (2001).
18Misra, A., Hoagland, R.G. and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 (2004).
19Anderson, P.M., Bingert, J.F., Misra, A. and Hirth, J.P.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51, 6059 (2003).
20Thornton, J.A.: High rate thick film growth. Ann. Rev. Mater. Sci. 7, 239 (1977).
21Sridhar, N., Rickman, J.M. and Srolovitz, D.J.: Multilayer film stability. J. Appl. Phys. 82,4852 (1997).
22Gong, H.R. and Liu, B.X.: Unusual alloying behavior at the equilibrium immiscible Cu-Nb interfaces. J. Appl. Phys. 96, 3020 (2004).
23Raabe, D. and Ge, J.: Experimental study on the thermal stability of Cr filaments in a Cu–Cr–Ag in situ composites. Scripta Mater. 51, 915 (2004).
24Shewmon, P.: Diffusion in Solids, 2nd ed. (TMS, Warrendale, PA, 1989).
25Porter, D.A. and Easterling, K.E.: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, London, U.K., 1992).
26Brown, A.M. and Ashby, M.F.: Acta Metall., 28, 1085 (1980).
27Vanleuken, H., Lodder, A. and Degroot, R.A.: Ab initio electronic structure calculations on the Nb/Cu multilayer system. J. Phys.: Condens. Matter 3, 7651 (1991).
28Venkatraman, R. and Bravman, J.C.: Separation of film thickness and grain boundary strengthening effects in Al thin films on Si. J. Mater. Res. 7, 2040 (1992).
29Thompson, C.V.: The yield stress of polycrystalline thin films. J. Mater. Res. 8,237 (1993).
30Hoagland, R.G., Kurtz, R.J. and Henager, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater. 50, 775 (2004).
31Hansen, N. and Ralph, B.: The strain and grain size dependence of the flow stress of copper. Acta Metall. 30, 411 (1982).
32Adams, M.A., Roberts, A.C. and Smallman, R.E.: Yield and fracture in polycrystalline niobium. Acta Metall. 8, 328 (1960).

Keywords

Effects of Elevated Temperature Annealing on the Structure and Hardness of Copper/niobium Nanolayered Films

  • A. Misra (a1) and R.G. Hoagland (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed