Skip to main content Accessibility help
×
Home

Effects of alloying elements on the formation of <c>-component loops in Zr alloy Excel under heavy ion irradiation

  • Yasir Idrees (a1), Elisabeth M. Francis (a2), Zhongwen Yao (a3), Andreas Korinek (a4), Marquis A. Kirk (a5), Mohammad Sattari (a6), Michael Preuss (a7) and Mark R. Daymond (a8)...

Abstract

We report here the microstructural changes occurring in the zirconium alloy Excel (Zr–3.5 wt% Sn–0.8Nb–0.8Mo–0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (β) phase, whereas, in the second case, large Zr3(Mo,Nb,Fe)4 secondary phase precipitates (SPPs) were grown in the alpha (α) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmission electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of <c>-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the <c>-component loops nucleate readily at 100, 300, and 400 °C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of <c>-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the β phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of <c>-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced amorphization occurs at 100 °C. Furthermore, dose and temperature seem to be the main factors governing the dissolution of SPPs and redistribution of alloying elements, which in turn controls the nucleation and growth of <c>-component loops. The correlation between the microstructural evolution and microchemistry has been found by EDS and is discussed in detail.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: 9yi@queensu.ca

Footnotes

Hide All

Contributing Editor: Djamel Kaoumi

Footnotes

References

Hide All
1. Peng, D.Q., Bai, X.D., Chen, X.W., Zhou, Q.G., Liu, X.Y., and Yu, R.H.: Effect of self ion bombardment on the corrosion behavior of zirconium. Nucl. Instrum. Methods Phys. Res., Sect. B 215, 394 (2004).
2. Idrees, Y., Yao, Z., Kirk, M.A., and Daymond, M.R.: In situ study of defect accumulation in zirconium under heavy ion irradiation. J. Nucl. Mater. 433, 95 (2013).
3. Azevedo, C.R.F.: A review on neutron-irradiation-induced hardening of metallic components. Eng. Failure Anal. 18, 1921 (2011).
4. Chow, C.K. and Khartabil, H.F.: Conceptual fuel channel designs for CANDU-SCWR. Nucl. Eng. Technol. 40(2), 139 (2008).
5. Ibrahim, E.F., Price, E.G., and Wysiekiersky, A.G.: Creep and stress-rupture of high strength zirconium alloys. Can. Metall. Q. 11(1), 273 (1972).
6. Causey, A.R., Carpenter, G.J.C., and MacEwen, S.R.: In-reactor stress relaxation of selected metals and alloys at low temperatures. J. Nucl. Mater. 90, 216 (1980).
7. Cheadle, B.A., Holt, R.A., Fidleris, V., Causey, A.R., and Urbanic, V.F.: High-strength, creep-resistant excel pressure tubes. In Zirconium in the Nuclear Industry: Fifth International Symposium, ASTM, STP.754, Franklin, D.G. ed.; American Society for Testing and Materials, Philidelphia, PA, 1982; p. 193.
8. Griffiths, M.: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190 (1988).
9. Chow, C.K., Khartabil, H.F., and Bushby, S.J.: A fuel channel design for CANDU-SCWR. Presented at The 14th International Conference on Nuclear Engineering, Paper No. ICONE14-89679, 2006; p. 677.
10. Salinas-Rodriguez, A., Akben, M.G., Jonas, J.J., and Ibrahim, E.F.: Comparative study of the deformation behaviour of Zr-2.5 wt% Nb and excel pressure tube alloys. Can. Metall. Q. 24(3), 259 (1985).
11. Holt, R.A. and Gilbert, R.W.: <c> Component dislocations in annealed Zircaloy irradiated at about 570 K. J. Nucl. Mater. 137, 185 (1986).
12. Fidleris, V., Tucker, R., and Adamson, R.B.: An overview of microstructural and experimental factors that affect the irradiation growth behavior of zirconium alloys. In Zirconium in the Nuclear Industry: 7th International Symposium, ASTM STP 939, Adamson, R.B. and Van Swam, L.F.P. eds.; American Society for Testing and Materials, Philadelphia PA, 1987; p. 49.
13. Rogerson, A. and Murgatroyd, R.A.: “Breakaway” growth in annealed Zircaloy-2 at 353 K and 553 K. J. Nucl. Mater. 113(2–3), 256 (1983).
14. Jostsons, A., Kelly, P.M., Blake, R.G., and Farrel, K.: Neutron irradiation-induced defect structures in zirconium. In Effects of Radiations in Structural Materials, ASTM STP.683, Sprague, J.A. and Kramer, D. eds.; American Society for Testing and Materials, Philidelphia, PA, 1979; p. 46.
15. Griffiths, M. and Gilbert, R.W.: The formation of c-component defects in zirconium alloys during neutron irradiation. J. Nucl. Mater. 150(2), 169 (1987).
16. Northwood, D.O., Gilbert, R.W., Bahen, L.E., Kelly, P.M., Blake, R.G., Jostsons, A., Madden, P.K., Faulkner, D., Bell, W., and Adamson, R.B.: Characterization of neutron irradiation damage in zirconium alloys-an international “round-robin” experiment. J. Nucl. Mater. 79(2), 379 (1979).
17. Jostsons, A., Blake, R.G., Napier, J.G., Kelly, P.M., and Farrell, K.: Faulted loops in neutron-irradiated zirconium. J. Nucl. Mater. 68(3), 267 (1977).
18. Holt, R.A. and Gilbert, R.W.: c-Component dislocations in neutron irradiated Zircaloy-2. J. Nucl. Mater. 116(1), 127 (1983).
19. Herring, R.A. and Loretto, M.H.: Solute interaction with Point Defects in HEVM Irradiated Zirconium Alloys. Proceedings of the 6th Annual Conference Of the Canadian Nuclear Society, French, P.M. and Phillips, G.J. eds.; Ottawa, 1985.
20. Yang, W.J.S.: Some observations of the role of irradiation-induced microstructures in irradiation growth “Breakaway” in Zircaloy-4. International Conference On Fundamental Mechanisms of Radiation-Induced Creep and Growth, Hecla Island, Manitoba, Canada, 1987.
21. De Carlan, Y., Régnard, C., Griffiths, M., and Gilbon, D.: Influence of iron in the nucleation of <c> component dislocation loops in irradiated Zircaloy-4. In Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP.1295, Bradley, E.R. and Sabol, G.P. eds.; American Society for Testing and Materials, Philidelphia, PA, 1996; p. 638.
22. Lee, J.H., Hwang, S.K., Yasuda, K., and Kinoshita, C.: Effect of molybdenum on electron radiation damage of Zr-base alloys. J. Nucl. Mater. 289(3), 334 (2001).
23. Idrees, Y., Yao, Z., Sattari, M., Kirk, M.A., and Daymond, M.R.: Irradiation induced microstructural changes in Zr-excel alloy. J. Nucl. Mater. 441(1–3), 138 (2013).
24. Hengstler-Eger, R.M., Baldo, P., Beck, L., Dorner, J., Ertl, K., Hoffmann, P.B., Hugenschmidt, C., Kirk, M.A., Petry, W., Pikart, P., and Rempel, A.: Heavy ion irradiation induced dislocation loops in AREVA’s M5® alloy. J. Nucl. Mater. 423(1–3), 170 (2012).
25. Griffiths, M.: Microstructure evolution in Zr alloys during Irradiation: Dose, dose rate, and impurity dependence. In Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Bruce, K. and Magnus, L. eds.; American Society for Testing and Materials, Philidelphia, PA, 2009; p. 19.
26. Carpenter, G.J.C. and Watters, J.F.: A study of electron irradiation damage in zirconium using a high voltage electron microscope. J. Nucl. Mater. 96(3), 213 (1981).
27. Tucker, R., Fidleris, V., and Adamson, R.B.: High-fluence irradiation growth of zirconium alloys at 644 to 725 K. In Zirconium in the Nuclear Industry: Sixth International Symposium, ASTM STP.824, Franklin, D.G. and Adamson, R.B. eds.; American Society for Testing and Materials, Philidelphia, PA, 1984; p. 472.
28. Murgatroyd, R.A. and Rogerson, A.: An assessment of the influence of microstructure and test conditions on the irradiation growth phenomenon in zirconium alloys. J. Nucl. Mater. 90(1–3), 240 (1980).
29. Rogerson, A.: Irradiation growth in zirconium and its alloys. J. Nucl. Mater. 159, 43 (1988).
30. Hood, G.M.: Point defect diffusion in α-Zr. J. Nucl. Mater. 159, 149 (1988).
31. Sattari, M., Holt, R.A., and Daymond, M.R.: Aging response and characterization of precipitates in Zr alloy Excel pressure tube material. J. Nucl. Mater. 452, 265 (2014).
32. Sattari, M., Holt, R.A., and Daymond, M.R.: Phase transformation temperatures of Zr alloy Excel. J. Nucl. Mater. 435(1–3), 241 (2013).
33. Ziegler, F., Biersack, J., and Littmark, U.: The Stopping and Range of Ions in Matter (Pergamon Press, Oxford, UK, 1985).
34. Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, New York, NY, 2007).
35. Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S., and Garner, F.A.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).
36. Li, M., Kirk, M.A., Baldo, P.M., Xu, D., and Wirth, B.D.: Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 92(16), 2048 (2012).
37. Banerjee, S. and Krishnan, R.: Martensitic transformation in zirconium-niobium alloys. Acta Metall. 19(12), 1317 (1971).
38. Srivastava, D., Mukhopadhyay, P., Banerjee, S., and Ranganathan, S.: Morphology and substructure of lath martensites in dilute Zr-Nb alloys. Mater. Sci. Eng., A 288(1), 101 (2000).
39. Banerjee, S. and Krishnan, R.: Martensitic transformation in Zr-Ti alloys. Metall. Trans. 4(8), 1811 (1973).
40. Sato, K., Matsumoto, H., Kodaira, K., Konno, T.J., and Chiba, A.: Phase transformation and age-hardening of hexagonal α′ martensite in Ti-12 mass%V-2 mass%Al alloys studied by transmission electron microscopy. J. Alloys. Compd. 506(2), 607 (2010).
41. Mantani, Y., Takemoto, Y., Hida, M., Sakakibara, A., and Tajima, M.: Phase transformation of α″ martensite structure by aging in Ti-8 mass%Mo Alloy. Mater. Trans. 45(5), 1629 (2004).
42. Griffiths, M., Loretto, M.H., and Smallman, R.E.: Electron damage in zirconium: II. Nucleation and growth of c-component loops. J. Nucl. Mater. 115(2), 323 (1983).
43. Gilbon, D. and Simonot, C.: Effect of irradiation on the microstructure of zircaloy-4. In Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP.1245, Garde, E.M. and Bradley, E.R. eds.; American Society for Testing and Materials: West Conshohocken, PA, 1994; p. 521.
44. Griffiths, M., Gilbert, R.W., and Fidleris, V.: Accelerated irradiation growth of zirconium alloys. In Zirconium in the NuclearIndustry: Eighth International Symposium, ASTM STP.1023, Van Swam, L.F.P. and Eucken, C.M. eds.; American Society for Testing and Materials: Philadelphia, PA, 1989; p. 658.
45. Nelson, R.S., Hudson, J.A., and Mazey, D.J.: The stability of precipitates in an irradiation environment. J. Nucl. Mater. 44, 318 (1972).
46. Griffiths, M.: Comments on precipitate stability in neutron-irradiated Zircaloy-4. J. Nucl. Mater. 170(3), 294 (1990).
47. Holt, R.A., Causey, A.R., Christodoulou, N., Griffiths, M., Ho, E.T.C., and Woo, C.H.: Non-linear irradiation growth of cold-worked Zircaloy-2. In Zirconium in Nuclear Industry: Eleventh International Symposium, ASTM STP.1295, Bradly, E.R. and Sabol, G.P. eds.; American Society for Testing and Materials, Philidelphia, PA, 1996; p. 623.
48. Griffiths, M., Gilbon, D., Regnard, C., and Lemaignan, C.: HVEM study of the effects of alloying elements and impurities on radiation damage in Zr-alloys. J. Nucl. Mater. 205, 273 (1993).
49. Griffiths, M., Holt, R.A., and Rogerson, A.: Microstructural aspects of accelerated deformation of Zircaloy nuclear reactor components during service. J. Nucl. Mater. 225, 245 (1995).
50. Buckley, S.N. and Manthorpe, S.A.: Dislocation loop nucleation and growth in zirconium-2.5 wt% niobium alloy during 1 MeV electron irradiation. J. Nucl. Mater. 90(1), 169 (1980).
51. Dubinko, V.I. and Klepikov, V.F.: The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation. J. Nucl. Mater. 362(2), 146 (2007).
52. Williams, C.D., Ells, C.E., and Dixon, P.R.: Development of high strength zirconium alloys. Can. Metall. Q. 11(1), 257 (1972).
53. Carpenter, G.J.C. and Walters, J.F.: Irradaition damage recovery in some zirconium alloys. In Zirconium in Nuclear Applications, ASTM STP 551, American Society for Testing and Materials, Philidelphia, PA, 1974; p. 400.
54. Abriata, J.P., Bolcich, J.C., and Arias, D.: The Sn-Zr (Tin-Zirconium) system. Bull. Alloy Phase Diagrams 4, 147 (1983).
55. Toffolon, C., Brachet, J.C., Servant, C., Legras, L., Charquet, D., Barberis, P., and Mardon, J.P.: Contribution of thermodynamic calculations to metallurgical studies of multi-component zirconium based alloys. In ASTM STP, 1423, ASTM, Philidelphia, PA, 2002; p. 361.
56. Hood, G.M. and Schultz, R.J.: Tracer diffusion in α-Zr. Acta. Metall. 22(4), 459 (1974).
57. Woo, O.T. and Carpenter, G.J.C.: Radiation-induced precipitation in Zircaloy-2. J. Nucl. Mater. 159, 397 (1988).
58. Zinkevich, M. and Mattern, N.: Thermodynamic assessment of the Mo-Zr system. J. Phase Equilib. 23(2), 156 (2002).
59. Russell, K.C.: Phase stability under irradiation. Prog. Mater. Sci. 28, 229 (1984).
60. Doriot, S., Gilbon, D., Bechade, J-L., Mathon, M-H., Legras, L., and Mardon, J-P.: Microstructural stability of M5™ Alloy irradiated up to high neutron fluences. J. ASTM Int. 2(7), 175 (2005).
61. Griffiths, M., Gilbert, R.W., and Carpenter, G.J.C.: Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation. J. Nucl. Mater. 150(1) 53 (1987).
62. Nuttall, K. and Faulkner, D.: The effect of irradiation on the stability of precipitates in Zr-2.5 wt.% Nb alloys. J. Nucl. Mater. 67(1–2), 131 (1977).
63. Kruger, R.M. and Adamson, R.B.: Precipitate behavior in zirconium-based alloys in BWRs. J. Nucl. Mater. 205, 242 (1993).
64. Onimus, F. and Béchade, J.L.: Radiation effects in zirconium alloys. In Comprehensive Nuclear Materials, Vol. 4, Konings, R.J.M., ed. Elsevier, Amsterdam, Netherlands, 2012; p. 31.
65. Motta, A.T.: Amorphization of intermetallic compounds under irradiation-A review. J. Nucl. Mater. 244, 227 (1997).
66. Motta, A.T. and Olander, D.R.: Theory of electron-irradiation-induced amorphization. Acta Metall. Mater. 38(11), 2175 (1990).
67. Yang, W.J.S.: Precipitate stability in neutron-irradiated Zircaloy-4. J. Nucl. Mater. 158, 71 (1988).
68. Etoh, Y. and Shimada, S.: Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence. J. Nucl. Mater. 200(1), 59 (1993).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed