Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T02:23:17.451Z Has data issue: false hasContentIssue false

Effects of alloying and treatment on void swelling of 316 stainless steels

Published online by Cambridge University Press:  31 January 2011

B.X. Liu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; and Center of Condensed Matter and Radiation Physics, CCAST (World Laboratory), Beijing 100080, China
S.L. Lai
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
J.G. Sun
Affiliation:
HVEM Laboratory of the General Research Institute of Nonferrous Metals, Beijing 100088, China
Get access

Abstract

Several samples of type 316 stainless steels, which were treated differently and modified with minor elements (such as Ti, Nb, etc.), were irradiated by 1 MeV electrons in HVEM at temperatures ranging from 823 K to 883 K. Void swelling behavior of the steels was investigated, and three parameters, i.e., swelling, void density, and void size, were measured. The results show that prior cold work improves the swelling resistance of type 316 stainless steels more effectively than solid-solution treatment. It is also shown that Ti is the best alloying element studied that can suppress void nucleation and its growth drastically by acting as sinks and impeding dislocation climb, resulting in the reduction of void swelling.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnston, W. G., Rosolowski, J. H., Turkalo, A. M., and Lauritzen, T., J. Nucl. Mater. 48, 330 (1973).CrossRefGoogle Scholar
2.Johnston, W. G., Rosolowski, J. H., Turkalo, A. M., and Lauritzen, T., J. Nucl. Mater. 54, 24 (1974).CrossRefGoogle Scholar
3.Shiraishi, K. and Katano, Y., In Situ Experiments with High Voltage Electron Microscopes, edited by Fujita, H. (Osaka Univ., 1985), p. 225.Google Scholar
4.Makin, M.J., U. K. A. E. A. AERE Report, R6957 (1971).Google Scholar
5.Igata, N., Kohno, Y., and Nishimura, J., In Situ Experiments with High Voltage Electron Microscopes, edited by Fujita, H. (Osaka Univ., 1985), p. 245.Google Scholar
6.Makin, M. J., Buckley, S. N., and Walters, G. P., J. Nucl. Mater. 68, 161 (1977).CrossRefGoogle Scholar
7.Carpenter, G. J. C. and Watters, J. F., J. Nucl. Mater. 96, 213 (1981).CrossRefGoogle Scholar
8.Laider, J. J., Garner, F. A., and Tomas, L. E., Irradiation Damage in Metals 9–10, 194 (1975).Google Scholar
9.Liu, B. X., Lai, S. L., Sun, J. G., Shang, C. H., and Xu, D., J. Nucl. Mater. 175, 129 (1990).CrossRefGoogle Scholar
10.Sun, J. G., Qian, J. P., Zhao, Z. Y., Chen, J. M., and Xu, Z. Y., J. Nucl. Mater., 176 (1990).Google Scholar
11.Olander, D. R., Fundamental Aspects of Nuclear Reactor Fuel Elements (U. S. ERDA Tech. Inf. Center, Oak Ridge, TN, 1976), Chap. 19.CrossRefGoogle Scholar
12.Brailsford, A. D. and Bullough, R., J. Nucl. Mater. 44, 121 (1972).CrossRefGoogle Scholar
13.Garner, F. A. and Wolfer, W. G., J. Nucl. Mater. 122 & 123, 201 (1984).CrossRefGoogle Scholar
14.Imeson, D., Tong, C. H., Parker, C. A., Sande, J. B.Vander, Grant, N. J., and Harling, O. K., J. Nucl. Mater. 122 & 123, 278 (1984).CrossRefGoogle Scholar
15.Takahashi, H., Ohnuki, S., Osanai, H., Takeyama, T., and Shiraishi, K., J. Nucl. Mater. 122 & 123, 327 (1984).CrossRefGoogle Scholar
16.Katano, Y., Nakata, K., Jitsukawa, S., Aruga, T., and Shiraishi, K., J. Nucl. Mater. 133 & 134, 530 (1985).CrossRefGoogle Scholar
17.Kawanishi, H., Nodaka, M., Sekimura, N., and Ishino, S., J. Nucl. Mater. 122 & 123, 284 (1984).CrossRefGoogle Scholar