Skip to main content Accessibility help

Effect of zinc and rare-earth element addition on mechanical, corrosion, and biological properties of magnesium

  • Rakesh Rajan Kottuparambil (a1), Srikanth Bontha (a1), Ramesh Motagondanahalli Rangarasaiah (a1), Shashi Bhushan Arya (a2), Anuradha Jana (a3), Mitun Das (a3), Vamsi Krishna Balla (a3), Srinivasan Amrithalingam (a4) and T. Ram Prabhu (a5)...


The present work aims to understand the effect of zinc and rare-earth element addition (i.e., 2 wt% Gd, 2 wt% Dy, and 2 wt% of Gd and Nd individually) on the microstructure evolution, mechanical properties, in vitro corrosion behavior, and cytotoxicity of Mg for biomedical application. The microstructure results indicate that the Mg–Zn–Gd alloy consists of the lamellar long period stacking ordered phase. The electrochemical and immersion corrosion behavior were studied in Hanks balanced salt solution. Enhanced corrosion resistance with reduced hydrogen evolution volume and magnesium (Mg2+) ion release were estimated for the Mg–Zn–Gd alloy as compared to the other two alloy systems. At the early stage of corrosion, formation of the oxide film inhibited the corrosion propagation. However, at the later stages, the breaking of the oxide film leads to shallow pitting mode of corrosion. The ultimate tensile strength of Mg–Zn–Gd–Nd is better than the other two alloys due to the uniform distribution of the Mg12Nd precipitate phase. The moderate strength in the Mg–Zn–Gd alloy is due to the low volume fraction of the secondary phase. The MTT (methylthiazoldiphenyl-tetrazolium bromide) assay study was carried out to understand the cell cytotoxicity on the alloy surfaces. Studies revealed that all three alloys had significant cellular adherence and no adverse effect on cells.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Robinson, D.A., Griffith, R.W., Shechtman, D., Evans, R.B., and Conzemius, M.G.: In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 6, 1869 (2010).
2.Zhang, L.N., Hou, Z.T., Ye, X., Bin Xu, Z., Bai, X.L., and Shang, P.: The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review. Front. Mater. Sci. 7, 227 (2013).
3.Seal, C.K., Vince, K., and Hodgson, M.A.: Biodegradable surgical implants based on magnesium alloys—A review of current research. IOP Conf. Ser.: Mater. Sci. Eng. 4, 012011 (2009).
4.Wu, G., Ibrahim, J.M., and Chu, P.K.: Surface & coatings technology surface design of biodegradable magnesium alloys—A review. Surf. Coat. Technol. 233, 2 (2013).
5.Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).
6.Li, Z., Gu, X., Lou, S., and Zheng, Y.: The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329 (2008).
7.Zhang, B.P., Wang, Y., and Geng, L.: Research on Mg–Zn–Ca alloy as degradable biomaterial. In Biomaterials-Physics and Chemistry, Pignatello, R., ed. (2011); Ch. 9, ISBN 978-953-307-418-4.
8.Gao, L., Chen, R.S., and Han, E.H.: Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 481, 379 (2009).
9.Mushahary, D., Sravanthi, R., Li, Y., Kumar, M.J., Harishankar, N., Hodgson, P.D., Wen, C., and Pande, G.: Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. Int. J. Nanomed. 8, 2887 (2013).
10.Peng, Q., Huang, Y., Zhou, L., Hort, N., and Kainer, K.U.: Preparation and properties of high purity Mg–Y biomaterials. Biomaterials 31, 398 (2010).
11.Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y., and Zhou, X.: Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater. Des. 29, 2034 (2008).
12.Yang, Z., Li, J.P., Zhang, J.X., Lorimer, G.W., and Robson, J.: Review on research and development of magnesium alloys. Acta Mettall. Sin. 21, 313 (2008).
13.Li, Y., Wen, C., Mushahary, D., Sravanthi, R., Harishankar, N., Pande, G., and Hodgson, P.: Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater. 8, 3177 (2012).
14.Zhang, E., Yang, L., Xu, J., and Chen, H.: Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater. 6, 1756 (2010).
15.Hu, X.S., Wu, K., Zheng, M.Y., Gan, W.M., and Wang, X.J.: Low frequency damping capacities and mechanical properties of Mg–Si alloys. Mater. Sci. Eng., A 452–453, 374 (2007).
16.Xu, R., Yang, X., Suen, K.W., Wu, G., Li, P., and Chu, P.K.: Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation. Appl. Surf. Sci. 263, 608 (2012).
17.Song, G. and Atrens, A.: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 (1999).
18.Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., and Bian, Y.: Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626 (2010).
19.Kannan, M.B. and Raman, R.K.S.: In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 29, 2306 (2008).
20.Ganrot, P.O.: Metabolism and possible health effects of aluminum. Environ. Health Perspect. 65, 363 (1986).
21.Dai, Y., Li, J., Li, J., Yu, L., Dai, G., Hu, A., Yuan, L., and Wen, Z.: Effects of rare earth compounds on growth and apoptosis of leukemic cell lines. In Vitro Cell. Dev. Biol.: Anim. 38, 373 (2002).
22.Chen, Y., Xu, Z., Smith, C., and Sankar, J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10, 4561 (2014).
23.Leng, Z., Zhang, J., Zhang, M., Liu, X., Zhan, H., and Wu, R.: Microstructure and high mechanical properties of Mg–9RY–4Zn (RY: Y-rich misch metal) alloy with long period stacking ordered phase. Mater. Sci. Eng., A 540, 38 (2012).
24.Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557 (2005).
25.Feyerabend, F., Fischer, J., Holtz, J., Witte, F., Willumeit, R., Drücker, H., Vogt, C., and Hort, N.: Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 6, 1834 (2010).
26.Mao, L., Yuan, G., Wang, S., Niu, J., Wu, G., and Ding, W.: A novel biodegradable Mg–Nd–Zn–Zr alloy with uniform corrosion behavior in artificial plasma. Mater. Lett. 88, 1 (2012).
27.Witte, F. and Eliezer, A.: Biodegradable metals. Degrad. Implant Mater. 77, 93 (2012).
28.Baboian, R. and Dean, S.W.: Corrosion Testing and Evaluation: Silver Anniversary Volume (ASTM, Pennsylvania, 1990).
29.Yang, J., Wang, L., Wang, L., and Zhang, H.: Microstructures and mechanical properties of the Mg–4.5Zn–xGd (x = 0, 2, 3, and 5) alloys. J. Alloys Compd. 459, 274 (2008).
30.Bi, G., Li, Y., Zang, S., Zhang, J., Ma, Y., and Hao, Y.: Microstructure, mechanical and corrosion properties of Mg–2Dy–xZn (x = 0, 0.1, 0.5, and 1 at.%) alloys. J. Magnesium Alloys 2, 64 (2014).
31.Atrens, A., Song, G-L., Liu, M., Shi, Z., Cao, F., and Dargusch, M.S.: Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17, 400 (2015).
32.Shi, Z., Liu, M., and Atrens, A.: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52, 579 (2010).
33.Song, G., Atrens, A., and StJohn, D.: An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In Magnesium Technology 2001, Hryn, J.N., ed. (The Minerals, Metals and Materials Society (TMS), Pennsylvania 2013); p. 254.
34.Zainal Abidin, N.I., Rolfe, B., Owen, H., Malisano, J., Martin, D., Hofstetter, J., Uggowitzer, P.J., and Atrens, A.: The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros. Sci. 75, 354 (2013).
35.Atrens, A., Liu, M., and Zainal Abidin, N.I.: Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng., B 176, 1609 (2011).
36.Atrens, A., Song, G., Cao, F., Shi, Z., and Bowen, P.K.: ScienceDirect advances in Mg corrosion and research suggestions. J. Magnesium Alloys 1, 177 (2013).
37.Cor, E.: Standard practice for laboratory immersion corrosion testing of metals 1. Corrosion 72, 1 (2004). (Reapproved).
38.Das, M., Bhattacharya, K., Dittrick, S.A., Mandal, C., Krishna, V., Kumar, T.S.S., and Bandyopadhyay, A.: In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in vitro biocompatibility. J. Mech. Behav. Biomed. Mater. 29, 259 (2014).
39.Srinivasan, A., Huang, Y., Mendis, C.L., Blawert, C., Kainer, K.U., and Hort, N.: Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys. Mater. Sci. Eng., A 595, 224 (2014).
40.Zhang, J., Zhang, W., Bian, L., Cheng, W., Niu, X., Xu, C., and Wu, S.: Study of Mg–Gd–Zn–Zr alloys with long period stacking ordered structures. Mater. Sci. Eng., A 585, 268 (2013).
41.Zheng, L., Liu, C., Wan, Y., Yang, P., and Shu, X.: Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr (wt%) alloy. J. Alloys Compd. 509, 8832 (2011).
42.Morishita, M., Yamamoto, H., Shikada, S., Kusumoto, M., and Matsumoto, Y.: Thermodynamics of the formation of magnesium–zinc intermetallic compounds in the temperature range from absolute zero to high temperature. Acta Mater. 54, 3151 (2006).
43.Yamasaki, M., Sasaki, M., Nishijima, M., Hiraga, K., and Kawamura, Y.: Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater. 55, 6798 (2007).
44.Xu, D., Han, E.H., and Xu, Y.: Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Prog. Nat. Sci.: Mater. Int. 26, 117 (2016).
45.Li, C.Q., Xu, D.K., Zeng, Z.R., Wang, B.J., Sheng, L.Y., Chen, X.B., and Han, E.H.: Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys. Mater. Des. 121, 430 (2017).
46.Zhang, J., Xin, C., Nie, K., Cheng, W., Wang, H., and Xu, C.: Microstructure and mechanical properties of Mg–Zn–Dy–Zr alloy with long-period stacking ordered phases by heat treatments and ECAP process. Mater. Sci. Eng., A 611, 108 (2014).
47.Peng, Q., Wang, L.L., and Wu, Y.: Structure stability and strengthening mechanism of die-cast Mg–Gd–Dy based alloy. J. Alloys Compd. 469, 587 (2009).
48.Ding, R., Chung, C., Chiu, Y., and Lyon, P.: Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy. Mater. Sci. Eng., A 527, 3777 (2010).
49.Gao, X. and Nie, J.F.: Structure and thermal stability of primary intermetallic particles in an Mg–Zn casting alloy. Scr. Mater. 57, 655 (2007).
50.Zhang, X., Yuan, G., Niu, J., Fu, P., and Ding, W.: Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios. J. Mech. Behav. Biomed. Mater. 9, 153 (2012).
51.Yang, L. and Zhang, E.: Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater. Sci. Eng., C 29, 1691 (2009).
52.Zhao, M.C., Liu, M., Song, G.L., and Atrens, A.: Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros. Sci. 50, 3168 (2008).
53.Song, G. and Atrens, A.: Understanding magnesium corrosion—A framework for improved alloy performance. Adv. Eng. Mater. 5, 837 (2003).
54.Zhang, X., Wu, Y., Xue, Y., Wang, Z., and Yang, L.: Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater. Lett. 86, 42 (2012).
55.Cai, S., Lei, T., Li, N., and Feng, F.: Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater. Sci. Eng., C 32, 2570 (In Tech, Europe, 2012).
56.Zander, D. and Zumdick, N.A.: Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys. Corros. Sci. 93, 222 (2015).
57.Nge, T.T., Sugiyama, J., and Bulone, V.: Bacterial Cellulose-Based Biomimetic Composites (2010).
58.Xu, D.K., Liu, L., Xu, Y.B., and Han, E.H.: Effect of microstructure and texture on the mechanical properties of the as-extruded Mg–Zn–Y–Zr alloys. Mater. Sci. Eng., A 443, 248 (2007).
59.Shao, X.H., Yang, Z.Q., and Ma, X.L.: Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 58, 4760 (2010).
60.Lu, F., Ma, A., Jiang, J., Chen, J., Song, D., Yuan, Y., Chen, J., and Yang, D.: Enhanced mechanical properties and rolling formability of fine-grained Mg–Gd–Zn–Zr alloy produced by equal-channel angular pressing. J. Alloys Compd. 643, 28 (2015).
61.Zhang, X., Yuan, G., Mao, L., Niu, J., Fu, P., and Ding, W.: Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg–Nd–Zn–Zr alloy. J. Mech. Behav. Biomed. Mater. 7, 77 (2012).


Type Description Title
Supplementary materials

Kottuparambil et al. supplementary material
Figure S1

 Unknown (4.5 MB)
4.5 MB

Effect of zinc and rare-earth element addition on mechanical, corrosion, and biological properties of magnesium

  • Rakesh Rajan Kottuparambil (a1), Srikanth Bontha (a1), Ramesh Motagondanahalli Rangarasaiah (a1), Shashi Bhushan Arya (a2), Anuradha Jana (a3), Mitun Das (a3), Vamsi Krishna Balla (a3), Srinivasan Amrithalingam (a4) and T. Ram Prabhu (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed