Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T00:42:57.211Z Has data issue: false hasContentIssue false

Effect of substrate bias on the promotion of nanocrystalline silicon growth from He-diluted SiH4 plasma at low temperature

Published online by Cambridge University Press:  16 February 2012

Debajyoti Das*
Affiliation:
Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
Debnath Raha
Affiliation:
Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
Wei-Chao Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
Kuei-Hsien Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
Chien-Ting Wu
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
Li-Chyong Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
*
a)Address all correspondence to this author. e-mail: erdd@iacs.res.in
Get access

Abstract

The effect of direct current (dc) substrate bias on the promotion of nanocrystallization in Si network has been studied, specifically within He-diluted SiH4 plasma in radio frequency (RF)-plasma-enhanced chemical vapor deposition. In view of organizing nanocrystallinity, controlled transmission of energy to the growing surface is needed and that is obtainable from metastable helium (He*) bombardment and, in particular, ionic helium (He+) bombardment under negative substrate bias. The structural morphology has been adequately regulated to a homogeneous network restraining from an exclusive columnar structure that is coherent to low-temperature growth. Notable improvements in the film quality in terms of enhanced crystallinity with low hydrogen content as well as reduced incubation volume, bulk void, and surface roughness have been demonstrated, even at low substrate temperature and low RF power. Use of appropriate dc substrate-bias has been identified as a supplementary parameter efficiently organizing the growth, making it more device-friendly.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matsuda, A.: Microcrystalline silicon: Growth and device application. J. Non-Cryst. Solids 338, 1 (2004).CrossRefGoogle Scholar
2.Cheng, Q., Xu, S., and (Ken) Ostrikov, K.: Temperature-dependent properties of nc-Si thin films synthesized in low-pressure, thermally non-equilibrium, high-density inductively coupled plasmas. J. Phys. Chem. C 113, 14759 (2009).CrossRefGoogle Scholar
3.Das, D. and Jana, M.: P-doped μc-Si:H films at a very low thickness and high deposition rate: Suitable for application in solar cells. J. Mater. Res. 18, 2371 (2003).CrossRefGoogle Scholar
4.Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
5.Zeuner, M., Neumann, H., and Meichsner, J.: Pressure and electrode distance effects on ion-energy distributions in rf discharges. Jpn. J. Appl. Phys. 36, 4711 (1997).CrossRefGoogle Scholar
6.Mukhopadhyay, S., Das, D., and Ray, S.: Better control over the onset of microcrystallinity in fast growing silicon network. J. Mater. Res. 19, 2597 (2004).CrossRefGoogle Scholar
7.Sarott, F.A., Iqbal, Z., and Veprek, S.: Effect of substrate bias on the properties of microcrystalline silicon films deposited in a glow discharge. Solid State Commun. 42, 465 (1982).CrossRefGoogle Scholar
8.Zhang, X.D., Zhang, F.R., Amanatides, E., Mataras, D., and Zhao, Y.: Effect of substrate bias on the plasma enhanced chemical vapor deposition of microcrystalline silicon thin films. Thin Solid Films 516, 6912 (2008).CrossRefGoogle Scholar
9.Kosku, N., Murakami, H., Higashi, S., and Miyazaki, S.: Influence of substrate dc bias on crystallinity of silicon films grown at a high rate from inductively-coupled plasma CVD. Appl. Surf. Sci. 244, 39 (2005).CrossRefGoogle Scholar
10.Wang, B., Liu, W., Wang, G.J., Liao, B., Wang, J.J., Zhu, M.K., Wang, H., and Yan, H.: Effect of substrate bias on β-SiC films prepared by PECVD. Mater. Sci. Eng., B 98, 190 (2003).CrossRefGoogle Scholar
11.Bae, S., Kalkan, A.K., Cheng, S., and Fonash, S.J.: Characteristics of amorphous and polycrystalline silicon films deposited at 120°C by electron cyclotron resonance plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 16, 1912 (1998).CrossRefGoogle Scholar
12.Nozawa, R., Takeda, H., Ito, M., Hori, M., and Goto, T.: Substrate bias effects on low temperature polycrystalline silicon formation using electron cyclotron resonance SiH4/H2 plasma. J. Appl. Phys. 81, 8035 (1997).CrossRefGoogle Scholar
13.Jia, H., Saha, J.K., Ohse, N., and Shirai, H.: Effect of substrate bias on high-rate synthesis of microcrystalline silicon films using a high-density microwave SiH4/H2 plasma. J. Phys. D: Appl. Phys. 39, 3844 (2006).CrossRefGoogle Scholar
14.Kim, J.H. and Chung, K.W.: Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering. J. Appl. Phys. 83, 5831 (1998).CrossRefGoogle Scholar
15.Fukaya, K., Tabata, A., and Mizutani, T.: Influence of target direct current bias voltage on the film structure of hydrogenated microcrystalline silicon prepared by direct current–radiofrequency coupled magnetron sputtering. Thin Solid Films 478, 132 (2005).CrossRefGoogle Scholar
16.Matsuda, A.: Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma. J. Non-Cryst. Solids, 59/60, 767 (1983).CrossRefGoogle Scholar
17.Das, D.: Control of hydrogenation and modulation of the structural network in Si:H by interrupted growth and H-plasma treatment. Phys. Rev. B 51, 10729 (1995).CrossRefGoogle Scholar
18.Sriraman, S., Agarwal, A., Aydil, E.S., and Maroudas, D.: Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418, 62 (2002).CrossRefGoogle ScholarPubMed
19.Das, D., Jana, M., and Barua, A.K.: Heterogeneity in microcrystalline-transition state: Origin of Si-nucleation and microcrystallization at higher rf power from Ar-diluted SiH4 plasma. J. Appl. Phys. 89, 3041 (2001).CrossRefGoogle Scholar
20.Jang, J., Kim, S.C., Park, K.C., and Kim, S.K.: Growth of microcrystalline silicon by remote plasma chemical vapor deposition without hydrogen dilution. J. Appl. Phys. 75, 3184 (1994).CrossRefGoogle Scholar
21.Bhattacharya, K. and Das, D.: Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen: Structural and optical characterization. Nanotechnology 18, 415704 (2007).CrossRefGoogle Scholar
22.Kumar, S., Drivillon, B., and Godet, C.: In situ spectroscopic ellipsometry study of the growth of microcrystalline silicon. J. Appl. Phys. 60, 1542 (1986).CrossRefGoogle Scholar
23.Hamers, E.A.G., Fontcuberta i Morral, A., Niikura, C., Brenot, R., and Roca i Cabarrocas, P.: Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films. J. Appl. Phys. 88, 3674 (2000).CrossRefGoogle Scholar
24.Hamma, S. and Roca i Cabarrocas, P.: Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution. J. Non-Cryst. Solids, 227/230, 852 (1998).CrossRefGoogle Scholar
25.Das, D.: Evolution of microcrystalline growth pattern by ultraviolet spectroscopic ellipsometry on Si:H films prepared by Hot-Wire CVD. Solid State Commun. 128, 397 (2003).CrossRefGoogle Scholar
26.Das, D.: Micro-Raman and ultraviolet ellipsometry studies on μc-Si:H films prepared by H2 dilution to the Ar-assisted SiH4 plasma in radio frequency glow discharge. J. Appl. Phys. 93, 2528 (2003).CrossRefGoogle Scholar
27.Bruggeman, D.A.G.: The prediction of the thermal conductivity of heterogeneous mixtures. Ann. Phys. 24, 636 (1935).CrossRefGoogle Scholar
28.Jellison, G.E. Jr., Chisholm, M.F., and Gorbatkin, S.M.: Optical functions of chemical vapor deposited thin-film silicon determined by spectroscopic ellipsometry. Appl. Phys. Lett. 62, 3348 (1983).CrossRefGoogle Scholar
29.Jellison, G.E. Jr.: Use of the biased estimator in the interpretation of spectroscopic ellipsometry data. Appl. Opt. 30, 3354 (1991).CrossRefGoogle ScholarPubMed
30.Raha, D. and Das, D.: Controlling the growth of nanocrystalline silicon by tuning negative substrate bias. Sol. Energy Mater. Sol. Cells 95, 3181 (2011).CrossRefGoogle Scholar
31.Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., and Wagner, H.: Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A 77, 1447 (1998).CrossRefGoogle Scholar
32.Messier, R. and Ross, R.C.: Evolution of microstructure in amorphous hydrogenated silicon. J. Appl. Phys. 53, 6220 (1982).CrossRefGoogle Scholar
33.Shanks, H., Fang, C.J., Ley, L., Cardona, M., Demond, F.J., and Kalbitzer, S.: Infrared spectrum and structure of hydrogenated amorphous silicon. Phys. Status Solidi B 100, 43 (1980).CrossRefGoogle Scholar
34.Kalache, B., Kosarev, A.I., Vanderhaghen, R., and Roca i Cabarrocas, P.: Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties. J. Appl. Phys. 93, 1262 (2003).CrossRefGoogle Scholar
35.Karunasiri, R.P.U., Bruinsma, R., and Rudnick, J.: Thin film growth and shadow instability. Phys. Rev. Lett. 62, 788 (1989).CrossRefGoogle ScholarPubMed
36.Amanatides, E., Mataras, D., Rapakoulias, D., van den Donker, M.N., and Rech, B.: Plasma emission diagnostics for the transition from microcrystalline to amorphous silicon solar cells. Sol. Energy Mater. Sol. Cells 87, 795 (2005).CrossRefGoogle Scholar
37.Bohm, C. and Perrin, J.: Spatially resolved optical emission and electrical properties of SiH4 RF discharges at 13.56 MHz in a symmetric parallel-plate configuration. J. Phys. D: Appl. Phys. 24, 865 (1991).CrossRefGoogle Scholar
38.Kondo, M., Fukawa, M., Guo, L., and Matsuda, A.: High rate growth of microcrystalline silicon at low temperatures. J. Non-Cryst. Solids 266269, 84 (2000).CrossRefGoogle Scholar
39.Jia, H., Fujiwara, H., Kondo, M., and Kuraseko, H.: Optical emission spectroscopy of atmospheric pressure microwave plasmas. J. Appl. Phys. 104, 054908 (2008).CrossRefGoogle Scholar
40.Theil, J.A. and Powell, G.: The effects of He plasma interactions with SiH4 in remote plasma enhanced chemical vapor deposition. J. Appl. Phys. 75, 2652 (1994).CrossRefGoogle Scholar
41.Kushner, M.J.: A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon. J. Appl. Phys. 63, 2532 (1988).CrossRefGoogle Scholar