Skip to main content Accessibility help

Effect of substrate bias on the promotion of nanocrystalline silicon growth from He-diluted SiH4 plasma at low temperature

  • Debajyoti Das (a1), Debnath Raha (a1), Wei-Chao Chen (a2), Kuei-Hsien Chen (a2), Chien-Ting Wu (a3) and Li-Chyong Chen (a3)...


The effect of direct current (dc) substrate bias on the promotion of nanocrystallization in Si network has been studied, specifically within He-diluted SiH4 plasma in radio frequency (RF)-plasma-enhanced chemical vapor deposition. In view of organizing nanocrystallinity, controlled transmission of energy to the growing surface is needed and that is obtainable from metastable helium (He*) bombardment and, in particular, ionic helium (He+) bombardment under negative substrate bias. The structural morphology has been adequately regulated to a homogeneous network restraining from an exclusive columnar structure that is coherent to low-temperature growth. Notable improvements in the film quality in terms of enhanced crystallinity with low hydrogen content as well as reduced incubation volume, bulk void, and surface roughness have been demonstrated, even at low substrate temperature and low RF power. Use of appropriate dc substrate-bias has been identified as a supplementary parameter efficiently organizing the growth, making it more device-friendly.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Matsuda, A.: Microcrystalline silicon: Growth and device application. J. Non-Cryst. Solids 338, 1 (2004).
2.Cheng, Q., Xu, S., and (Ken) Ostrikov, K.: Temperature-dependent properties of nc-Si thin films synthesized in low-pressure, thermally non-equilibrium, high-density inductively coupled plasmas. J. Phys. Chem. C 113, 14759 (2009).
3.Das, D. and Jana, M.: P-doped μc-Si:H films at a very low thickness and high deposition rate: Suitable for application in solar cells. J. Mater. Res. 18, 2371 (2003).
4.Thornton, J.A.: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. A 4, 3059 (1986).
5.Zeuner, M., Neumann, H., and Meichsner, J.: Pressure and electrode distance effects on ion-energy distributions in rf discharges. Jpn. J. Appl. Phys. 36, 4711 (1997).
6.Mukhopadhyay, S., Das, D., and Ray, S.: Better control over the onset of microcrystallinity in fast growing silicon network. J. Mater. Res. 19, 2597 (2004).
7.Sarott, F.A., Iqbal, Z., and Veprek, S.: Effect of substrate bias on the properties of microcrystalline silicon films deposited in a glow discharge. Solid State Commun. 42, 465 (1982).
8.Zhang, X.D., Zhang, F.R., Amanatides, E., Mataras, D., and Zhao, Y.: Effect of substrate bias on the plasma enhanced chemical vapor deposition of microcrystalline silicon thin films. Thin Solid Films 516, 6912 (2008).
9.Kosku, N., Murakami, H., Higashi, S., and Miyazaki, S.: Influence of substrate dc bias on crystallinity of silicon films grown at a high rate from inductively-coupled plasma CVD. Appl. Surf. Sci. 244, 39 (2005).
10.Wang, B., Liu, W., Wang, G.J., Liao, B., Wang, J.J., Zhu, M.K., Wang, H., and Yan, H.: Effect of substrate bias on β-SiC films prepared by PECVD. Mater. Sci. Eng., B 98, 190 (2003).
11.Bae, S., Kalkan, A.K., Cheng, S., and Fonash, S.J.: Characteristics of amorphous and polycrystalline silicon films deposited at 120°C by electron cyclotron resonance plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 16, 1912 (1998).
12.Nozawa, R., Takeda, H., Ito, M., Hori, M., and Goto, T.: Substrate bias effects on low temperature polycrystalline silicon formation using electron cyclotron resonance SiH4/H2 plasma. J. Appl. Phys. 81, 8035 (1997).
13.Jia, H., Saha, J.K., Ohse, N., and Shirai, H.: Effect of substrate bias on high-rate synthesis of microcrystalline silicon films using a high-density microwave SiH4/H2 plasma. J. Phys. D: Appl. Phys. 39, 3844 (2006).
14.Kim, J.H. and Chung, K.W.: Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering. J. Appl. Phys. 83, 5831 (1998).
15.Fukaya, K., Tabata, A., and Mizutani, T.: Influence of target direct current bias voltage on the film structure of hydrogenated microcrystalline silicon prepared by direct current–radiofrequency coupled magnetron sputtering. Thin Solid Films 478, 132 (2005).
16.Matsuda, A.: Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma. J. Non-Cryst. Solids, 59/60, 767 (1983).
17.Das, D.: Control of hydrogenation and modulation of the structural network in Si:H by interrupted growth and H-plasma treatment. Phys. Rev. B 51, 10729 (1995).
18.Sriraman, S., Agarwal, A., Aydil, E.S., and Maroudas, D.: Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418, 62 (2002).
19.Das, D., Jana, M., and Barua, A.K.: Heterogeneity in microcrystalline-transition state: Origin of Si-nucleation and microcrystallization at higher rf power from Ar-diluted SiH4 plasma. J. Appl. Phys. 89, 3041 (2001).
20.Jang, J., Kim, S.C., Park, K.C., and Kim, S.K.: Growth of microcrystalline silicon by remote plasma chemical vapor deposition without hydrogen dilution. J. Appl. Phys. 75, 3184 (1994).
21.Bhattacharya, K. and Das, D.: Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen: Structural and optical characterization. Nanotechnology 18, 415704 (2007).
22.Kumar, S., Drivillon, B., and Godet, C.: In situ spectroscopic ellipsometry study of the growth of microcrystalline silicon. J. Appl. Phys. 60, 1542 (1986).
23.Hamers, E.A.G., Fontcuberta i Morral, A., Niikura, C., Brenot, R., and Roca i Cabarrocas, P.: Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films. J. Appl. Phys. 88, 3674 (2000).
24.Hamma, S. and Roca i Cabarrocas, P.: Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution. J. Non-Cryst. Solids, 227/230, 852 (1998).
25.Das, D.: Evolution of microcrystalline growth pattern by ultraviolet spectroscopic ellipsometry on Si:H films prepared by Hot-Wire CVD. Solid State Commun. 128, 397 (2003).
26.Das, D.: Micro-Raman and ultraviolet ellipsometry studies on μc-Si:H films prepared by H2 dilution to the Ar-assisted SiH4 plasma in radio frequency glow discharge. J. Appl. Phys. 93, 2528 (2003).
27.Bruggeman, D.A.G.: The prediction of the thermal conductivity of heterogeneous mixtures. Ann. Phys. 24, 636 (1935).
28.Jellison, G.E. Jr., Chisholm, M.F., and Gorbatkin, S.M.: Optical functions of chemical vapor deposited thin-film silicon determined by spectroscopic ellipsometry. Appl. Phys. Lett. 62, 3348 (1983).
29.Jellison, G.E. Jr.: Use of the biased estimator in the interpretation of spectroscopic ellipsometry data. Appl. Opt. 30, 3354 (1991).
30.Raha, D. and Das, D.: Controlling the growth of nanocrystalline silicon by tuning negative substrate bias. Sol. Energy Mater. Sol. Cells 95, 3181 (2011).
31.Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., and Wagner, H.: Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A 77, 1447 (1998).
32.Messier, R. and Ross, R.C.: Evolution of microstructure in amorphous hydrogenated silicon. J. Appl. Phys. 53, 6220 (1982).
33.Shanks, H., Fang, C.J., Ley, L., Cardona, M., Demond, F.J., and Kalbitzer, S.: Infrared spectrum and structure of hydrogenated amorphous silicon. Phys. Status Solidi B 100, 43 (1980).
34.Kalache, B., Kosarev, A.I., Vanderhaghen, R., and Roca i Cabarrocas, P.: Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties. J. Appl. Phys. 93, 1262 (2003).
35.Karunasiri, R.P.U., Bruinsma, R., and Rudnick, J.: Thin film growth and shadow instability. Phys. Rev. Lett. 62, 788 (1989).
36.Amanatides, E., Mataras, D., Rapakoulias, D., van den Donker, M.N., and Rech, B.: Plasma emission diagnostics for the transition from microcrystalline to amorphous silicon solar cells. Sol. Energy Mater. Sol. Cells 87, 795 (2005).
37.Bohm, C. and Perrin, J.: Spatially resolved optical emission and electrical properties of SiH4 RF discharges at 13.56 MHz in a symmetric parallel-plate configuration. J. Phys. D: Appl. Phys. 24, 865 (1991).
38.Kondo, M., Fukawa, M., Guo, L., and Matsuda, A.: High rate growth of microcrystalline silicon at low temperatures. J. Non-Cryst. Solids 266269, 84 (2000).
39.Jia, H., Fujiwara, H., Kondo, M., and Kuraseko, H.: Optical emission spectroscopy of atmospheric pressure microwave plasmas. J. Appl. Phys. 104, 054908 (2008).
40.Theil, J.A. and Powell, G.: The effects of He plasma interactions with SiH4 in remote plasma enhanced chemical vapor deposition. J. Appl. Phys. 75, 2652 (1994).
41.Kushner, M.J.: A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon. J. Appl. Phys. 63, 2532 (1988).


Related content

Powered by UNSILO

Effect of substrate bias on the promotion of nanocrystalline silicon growth from He-diluted SiH4 plasma at low temperature

  • Debajyoti Das (a1), Debnath Raha (a1), Wei-Chao Chen (a2), Kuei-Hsien Chen (a2), Chien-Ting Wu (a3) and Li-Chyong Chen (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.