Skip to main content Accessibility help

Effect of solution pH on the accelerated cracking of nanoporous thin-film glasses

  • Eric P. Guyer (a1) and Reinhold H. Dauskardt (a1)


Hybrid organic–inorganic nanoporous thin-film glasses are extremely fragile and prone to stress-corrosion cracking in reactive environments. This has limited their integration as ultra low dielectric constant layers in high density integrated circuits. We demonstrate how crack growth is influenced by non-buffered aqueous solutions and show that with increasing pH, crack-growth rates are significantly accelerated. Interestingly, a crack growth regime limited by the transport of hydroxide ions to the crack tip was observed. Existing models commonly used to predict crack growth are shown to over estimate the experimental data by 6 orders of magnitude. We rationalize this behavior in terms of a significant difference in the crack tip solution chemistry as compared to that of the bulk and propose both chemical reaction and transport mechanisms to support this hypothesis.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Nguyen, C.V., Carter, K.R., Hawker, C.J., Hedrick, J.L., Jaffe, R.L., Miller, R.D., Remenar, J.F., Rhee, H.W., Rice, P.M., Toney, M.F., Trollsas, M. and Yoon, D.Y.: Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates. Chem. Mater. 11, 3080 (1999).
2.Guyer, E.P. and Dauskardt, R.H.: Fracture of nanoporous thin-film glasses. Nature Mater. 3(1), 53 (2004).
3.Bhatnagar, A., Hoffman, M.J. and Dauskardt, R.H.: Fracture and subcritical crack-growth behavior of Y-Si-Al-O-N glasses and Si3N4 ceramics. J. Am. Ceram. Soc. 83, 585 (2000).
4.Dill, S.J., Bennison, S.J. and Dauskardt, R.H.: Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect. J. Am. Ceram. Soc. 80, 773 (1997).
5.Crichton, S.N., Tomozawa, M., Hayden, J.S., Suratwala, T.I. and Campbell, J.H.: Subcritical crack growth in a phosphate laser glass. J. Am. Ceram. Soc. 82, 3097 (1999).
6.Wiederhorn, S.M.: Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50, 407 (1967).
7.Wiederhorn, S.M. and Bolz, L.H.: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53, 543 (1970).
8.Wiederhorn, S.M., Johnson, H., Heuer, A.H. and Diness, A.M.: Fracture of glass in vacuum. Am. Ceram. Soc. Bull. 52, 345 (1973).
9.Wiederhorn, S.M., Haller, W.K., Bolz, L.H. and Blackburn, D.H.: A chemical interpretation of the stress-corrosion cracking of glass. Am. Ceram. Soc. Bull. 49, 432 (1970).
10.Wiederhorn, S.M. and Johnson, H.: Effect of pressure on static fatigue of glass. J. Am. Ceram. Soc. 54, 585 (1971).
11.Michalske, T.A. and Bunker, B.C.: A chemical kinetics model for glass fracture. J. Am. Ceram. Soc. 76, 2613 (1993).
12.Michalske, T.A. and Bunker, B.C.: Steric effects in stress corrosion fracture of glass. J. Am. Ceram. Soc. 70, 780 (1987).
13.Michalske, T.A. and Bunker, B.C.: Slow fracture model based on strained silicate structures. J. Appl. Phys. 56, 2686 (1984).
14.Michalske, T.A. and Freiman, S.W.: A molecular mechanism for stress corrosion in vitreous silica. J. Am. Ceram. Soc. 66, 284 (1983).
15.Michalske, T.A. and Freiman, S.W.: A molecular interpretation of stress corrosion in silica. Nature 295, 511 (1982).
16.Williams, J.G. and Marshall, G.P.: Environmental crack and craze growth phenomena in polymers. Proc. R. Soc. London Ser. A 342, 55 1975 .
17.Chan, M.K.V. and Williams, J.G.: Slow stable crack-growth in high-density polyethylenes. Polym. 24, 234 (1983).
18.Lane, M.W., Snodgrass, J.M. and Dauskardt, R.H.: Environmental effects on interfacial adhesion. Microelectron. Reliab. 41, 1615 (2001).
19.Kook, S.Y. and Dauskardt, R.H.: Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293 (2002).
20.Snodgrass, J.M., Pantelidis, D., Jenkins, M.L., Bravman, J.C. and Dauskardt, R.H.: Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Mater. 50, 2395 (2002).
21.Guyer, E.P. and Dauskardt, R.H.: Effect of aqueous solution chemistry on the accelerated cracking of lithographically patterned arrays of copper and nanoporous thin-films, in Materials Technology and Reliability for Advanced Interconnects and Low-k Dielectrics–2004, edited by Carter, R.J., Hau-Riege, C.S., Kloster, G.M., Lu, T-M., and Schulz, S.E. (Mater. Res. Soc. Symp. Proc., 812, Warrendale, PA, 2004).
22.Lane, M., Ware, R., Voss, S., Ma, Q., Fujimoto, H., and Dauskardt, R.H.: Progressive debonding of multilayer interconnect structures, in Materials Reliability in Microelectronics VII Symposium, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E., Jr., and Z. Suo. (Mater. Res. Soc. Symp. Proc., 473, Warrendale, PA, 1997).
23.Cook, R. and Liniger, E.: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146(12), 4439 (1999).
24.Lin, Y., Vlassak, J., Tsui, T. and McKerrow, A.: Environmental effects on subcritical delamination of dielectric and metal films from organosilicate glass (OSG) thin films. (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2003).
25.Wiederhorn, S.M. and Johnson, H.: Effect of electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56, 192 (1973).
26.Dauskardt, R.H., Lane, M., Ma, Q. and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998).
27.Das, A., Le, Q.T., Furukawa, Y., Nguyen, V.H., Terzieva, V., de Theije, F., Whelan, C.M., Maenhoudt, M., Struyf, H., Tokei, Z., Iacopi, F., Stucchi, M., Carbonell, L., Vos, I., Bender, H., Patz, M., Beyer, G., Van Hove, M. and Maex, K.: Characterisation of JSR’s spin-on hardmask FF-02. Microelectron. Eng. 70, 308 (2003).
28.Lane, M., Dauskardt, R.H., Vainchtein, A. and Gao, H.: Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15, 2758 (2000).
29.Hohlfelder, R.J., Maidenberg, D.A., Dauskardt, R.H., Wei, Y.G. and Hutchinson, J.W.: Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures. J. Mater. Res. 16, 243 (2001).
30.Wiederhorn, S.M.: A chemical interpretation of static fatigue. J. Am. Ceram. Soc. 55, 81 (1972).
31.White, G.S., Freiman, S.W., Weiderhorn, S.M. and Coyle, T.D.: Effects of counterions on crack growth in vitreous silica. J. Am. Ceram. Soc. 70, 891 (1987).
32.Budd, S.M.: The mechanisms of chemical reaction between silicate glass and attacking agents. Phys. Chem. Glasses 2, 111 (1961).
33.Vlassak, J.J., Lin, Y. and Tsui, T.Y.: Fracture of organosilicate glass thin films: Environmental effects. Mater. Sci. Eng. A 391(1–2), 159 (2004).
34.Brady, P.V. and Walther, J.V.: Controls on silicate dissolution rates in neutral and basic pH solutions at 25C. Geochim. Cosmochim. Acta. 53, 2823 (1989).
35.Iler, R.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979), xxiv, p. 866.
36.Brady, P.V. and Walther, J.V.: Controls on silicate dissolution rates in neutral and basic pH solutions at 25-Degrees-C. Geochim. Cosmochim. Acta. 53, 2823 (1989).
37.Atkins, P.W.: Physical Chemistry, 2nd ed. (W.H. Freeman and Co., lNew York, NY, 1982).
38.Pitzer, K.S.: Electrolyte theory—Improvements since Debye and Huckel. Acc. Chem. Res. 10, 371 (1977).
39.Wiederhorn, S.M., Fuller, E.R.J. and Thomson, R.: Micromechanisms of crack growth in ceramics and glasses in corrosive environments. Metal Sci. 14, 450 (1980).
40.Fogler, S.H.: Elements of Chemical Reaction Engineering (Prentice Hall, NJ, 1999).
41.Balej, J.: Activity coefficients of aqueous solutions of NaOH and KOH in wide concentration and temperature ranges. Collection of Czechoslovack Chem. Comm. 61, 1549 (1996).
42.Rock, P.A.: Chemical Thermodynamics (University Science Books, Mill Valley, CA, 1983).
43.Lawn, B.R.: Interfacial forces and the fundamental nature of brittle cracks. Appl. Phys. Lett. 47, 809 (1985).
44.Wiederhorn, S.M. and Fuller, E.R.: Effect of surface forces on subcritical crack-growth in glass. J. Am. Ceram. Soc. 72, 248 (1989).
45.Chan, K.Y.: Electrolytes in nanostructures, in Nano-Surface Chemistry, edited by Rosoff, M. (Marcel Dekker, Inc., New York, NY, 2002).
46.Israelachvili, J.: Intermolecular & Surface Forces, 2nd ed. (Academic Press, London, England, 1992).
47.Chen, W-C. and Yen, C-T.: Effects of slurry formulations on chemical-mechanical polishing of low-dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane. J. Vac. Sci. Technol. B 18, 201 (2000).

Effect of solution pH on the accelerated cracking of nanoporous thin-film glasses

  • Eric P. Guyer (a1) and Reinhold H. Dauskardt (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.