Skip to main content Accessibility help
×
Home

Effect of rolling reductions on microstructure and properties of 2Cr13/316L multi-layered steel composite plate by accumulative roll-bonding

  • Rui Cao (a1), Yun Ding (a1), Xiaokang Zhao (a1), Xiaobo Zhang (a1), XiaoXia Jiang (a2), YingJie Yan (a1) and Jianhong Chen (a1)...

Abstract

The 2Cr13/316L multilayered composite plates were fabricated by hot rolling with recycle heating step. The effect of rolling reductions on microstructure and properties was investigated. The 2Cr13 layer consists of martensite and lath ferrite, but the middle layer has less ferrite than both sides. The content and grains of ferrite increase with the increase of the reduction and number of reheating, which leads to a decrease in the hardness of the 2Cr13 layer. The hardness of the 2Cr13 layer is determined by the volume ratio of martensite and ferrite. Tensile strength of the specimens with the rolling reduction of 72% and 82% reached 815.8 MPa and 763.4 MPa, while elongations were 20% and 20.8%, respectively. With the increase of the rolling reduction, the fracture mode also changed from cleavage fracture to dimple fracture. There were no cracks and delamination when the 2Cr13/316L composite plate bent to 130° and 180°, which indicated better interfacial bonding.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: caorui@lut.cn

References

Hide All
1.Nambu, S., Michiuchi, M., Inoue, J., and Koseki, T.: Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos. Sci. Technol. 69, 1936 (2009).
2.Seok, M.Y., Lee, J.A., Lee, D.H., Ramamurty, U., Nambu, S., Koseki, T., and Jang, J.I.: Decoupling the contributions of constituent layers to the strength and ductility of a multi-layered steel. Acta Mater. 121, 164 (2016).
3.Zhang, T., Wang, W., Zhang, W., Wei, Y., Cao, X.Q., Yan, Z.F., and Zhou, J.: Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding. J. Alloys Compd. 735, 1759 (2018).
4.Lazurenko, D.V., Bataev, I.A., Mali, V.I., Bataev, A.A., Maliutina, I.N., Lozhkin, V.S., Esikov, M.A., and Jorge, A.M.J.: Explosively welded multilayer Ti–Al composites: Structure and transformation during heat treatment. Mater. Des. 102, 122 (2016).
5.Bataev, I.A., Ogneva, T.S., Bataev, A.A., Mali, V.I., Esikov, M.A., Lazurenko, D.V., Guo, Y., and Jorge Junior, A.M.: Explosively welded multilayer Ni–Al composites. Mater. Des. 88, 1082 (2015).
6.Wu, L., Kang, H.J., Chen, Z.N., Liu, N., and Wang, T.M.: Horizontal continuous casting process under electromagnetic field for preparing AA3003/AA4045 clad composite hollow billets. Trans. Nonferrous Met. Soc. China 25, 2675 (2015).
7.Dwivedia, S.P., Sharma, S., and Mishra, R.K.: Microstructure and mechanical properties of A356/SiC composites fabricated by electromagnetic stir casting. Procedia Mater. Sci. 6, 1524 (2014).
8.Springer, H., Kostka, A., Payton, E.J., Raabe, D., Kaysser-Pyzalla, A., and Eggeler, G.: On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater. 59, 1586 (2011).
9.Yang, D., Cizek, P., Hodgson, P., and Wen, C.E.: Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr. Mater. 62, 321 (2010).
10.Eizadjou, M., Talachi, A.K., Manesh, H.D., Shahabi, H.S., and Janghorban, K.: Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos. Sci. Technol. 68, 2003 (2008).
11.Reihanian, M. and Naseri, M.: An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer. Mater. Des. 89, 1213 (2016).
12.Ohaski, S., Kato, S., Tsuji, N., Ohkubo, T., and Hono, K.: Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater. 55, 2885 (2007).
13.Ghalandari, L., Mahdavian, M.M., and Reihanian, M.: Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB). Mater. Sci. Eng., A 593, 145 (2014).
14.Li, X.B., Zu, G.Y., and Wang, P.: Microstructure development and its effects on mechanical of Al/Cu laminated composites. Trans. Nonferrous Met. Soc. China 25, 36 (2015).
15.Wu, K., Chang, H., Maawad, E., Gan, W.M., Brokmeier, H.G., and Zheng, M.Y.: Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB). Mater. Sci. Eng., A 527, 3073 (2010).
16.Danaie, M., Mauer, C., Mitlin, D., and Huot, J.: Hydrogen storage in bulk Mg–Ti and Mg-stainless steel multilayer composites synthesized via accumulative roll-bonding (ARB). Int. J. Hydrogen Energy 36, 3022 (2011).
17.Chang, H., Zheng, M.Y., Gan, W.M., Xu, C., and Brokmeier, H.G.: Texture evolution of the Mg/Al laminated composite by accumulative roll bonding at ambient temperature. Rare Met. Mater. Eng. 42, 0441 (2013).
18.Baufeld, B., der Biest, O.V., and Gault, R.: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties. Mater. Des. 31, S106 (2010).
19.Cui, X.P., Fan, G.H., Lin, G., Wang, Y., Huang, L.J., and Peng, H.X.: Growth kinetics of TiAl3 layer in multi-laminated Ti–(TiB2/Al) composite sheets during annealing treatment. Mater. Sci. Eng., A 539, 337 (2012).
20.Eizadjou, M., Manesh, D.H., and Janghorban, K.: Investigation of roll bonding between aluminum alloy strips. Mater. Des. 29, 909 (2008).
21.Abbasi, M. and Toroghinejad, M.R.: Effects of processing parameters on the bond strength of Cu/Cu roll-bonded strips. J. Mater. Process. Technol. 10, 560 (2010).
22.Movahedi, M., Madaah-Hosseini, H.R., and Kokabi, A.H.: The influence of roll bonding parameters on the bond strength of Al-3003/Zn soldering sheets. Mater. Sci. Eng., A 487, 417 (2008).
23.Chaudhari, G.P. and Acoff, V.: Cold roll bonding of multi-layered bi-metal laminate composites. Compos. Sci. Technol. 69, 1667 (2009).
24.Jamaati, R. and Toroghinejad, M.R.: Investigation of the parameters of the cold roll bonding (CRB) process. Mater. Sci. Eng., A 527, 2320 (2010).
25.Luo, J.G. and Acoff, V.L.: Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater. Sci. Eng., A 379, 164 (2004).
26.Jindal, V., Srivastava, V.C., and Ghosh, R.N.: Development of IF steel-Al multilayer composite by repetitive roll bonding and annealing process. Mater. Sci. Technol. 24, 798 (2008).
27.Talebian, M. and Alizadeh, M.: Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics. Mater. Sci. Eng., A 590, 186 (2014).
28.Liu, J., Han, J.T., and Gao, G.: Study on heating treatment of 45steel/60Si2CrA multi-layer composite armor plate. Adv. Mater. Res. 941–944, 360 (2014).
29.Lee, J.H., Han, J.Y., Kim, K.M., Ryi, S.K., and Kim, D.W.: Development of homogeneous Pd–Ag alloy membrane formed on porous stainless steel by multi-layered films and Ag-upfilling heat treatment. J. Membr. Sci. 492, 242 (2015).
30.Pozuelo, M., Carreno, F., Caesi, M., and Ruano, O.A.: Influence of interfaces on the mechanical properties of ultrahigh carbon steel multilayer laminates. Int. J. Mater. Res. 98, 47 (2007).
31.Liu, B.X., Huang, L.J., Rong, X.D., Geng, L., and Yin, F.X.: Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes. Compos. Sci. Technol. 126, 94 (2016).
32.Pozuelo, M., Carreno, F., and Ruano, O.A.: Delamination effect on the impact toughness of an ultrahigh carbon-mild steel laminate composite. Compos. Sci. Technol. 66, 2671 (2006).
33.Adharapurapu, R.R., Vecchio, K.S., Jiang, F.C., Rohatgi, A.: Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti–Al3Ti metal-intermetallic laminate composites. Metall. Mater. Trans. A 6A, 1595 (2005).
34.Inoue, J., Nambu, S., Ishimoto, Y., and Koseki, T.: Fracture elongation of brittle/ductile multilayered steel composites with a strong interface. Scr. Mater. 59, 1055 (2008).
35.Oya, T., Tiesler, N., Kawanishi, S., Yanagimoto, J., and Koseki, T.: Experimental and numerical analysis of multilayered steel sheets upon bending. J. Mater. Process. Technol. 210, 1926 (2010).
36.Kurmanaeva, L., McCrea, J., Jian, J., Fiebig, J., Wang, H., Mukherjee, A.K., and Lavernia, E.J.: Influence of layer thickness on mechanical properties of multilayered NiFe samples processed by electrodeposition. Mater. Des. 90, 389 (2016).
37.Cao, R., Zhao, X.K., Ding, Y., Zhang, X.B., Jiang, X.X., Yan, Y.J., and Chen, J.H.: Effects of the rolling temperature on microstructure and mechanical properties of 2Cr13/316L laminated composites prepared by accumulative roll-bonding (ARB). Mater. Charact. 139, 153 (2018).
38.Tong, J.G., Chen, R., Bao, W.P., Yan, K., and Ren, X.P.: Composite rolling of 25Cr5MoA steel/micro-alloy steel/Q235 steel. J. Univ. Sci. Technol. Beijing 02, 186 (2009).
39.Ma, M., Huo, P., Liu, W.C., Wang, G.J., and Wang, D.M.: Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding. Mater. Sci. Eng., A 636, 301 (2015).
40.Zhou, H.T., Kong, F.T., Wu, K., Wang, X.P., and Chen, Y.Y.: Hot pack rolling nearly lamellar Ti–44Al–8Nb–(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties. Mater. Des. 121, 202 (2017).
41.Kimura, K., Ushioda, K., Ishimaru, E., and Takahashi, A.: Role of hard martensite phase prior to cold-rolling on microstructure evolution after annealing in ferritic stainless steel. Mater. Sci. Eng., A 663, 86 (2016).
42.Liu, J., Li, L., and Ma, Y.Z.: Hot rolling and properties of 304/440/304 stainless steel composite plate for cutting tools. Spec. Steel 01, 32 (2009).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed