Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-06T18:58:38.927Z Has data issue: false hasContentIssue false

Effect of pulse current on structure and adhesion of apatite electrochemically deposited onto titanium substrates

Published online by Cambridge University Press:  31 January 2011

Tomoyasu Hayakawa
Affiliation:
Photonics and Electronics Science and Engineering Center, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
Masakazu Kawashita*
Affiliation:
Center for Research Strategy and Support, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
Gikan H. Takaoka
Affiliation:
Photonics and Electronics Science and Engineering Center, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
Toshiki Miyazaki
Affiliation:
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu 808-0196, Japan
*
a)Address all correspondence to this author. e-mail: m-kawa@ecei.tohoku.ac.jp
Get access

Abstract

Apatite films were deposited onto titanium (Ti) metal substrates by an electrodeposition method under a pulse current. Metastable calcium phosphate solution was used as the electrolyte. The ion concentration of the solution was 1.5 times that of human body fluid, but the solution did not contain magnesium ions at 36.5 °C. We used an average current density of 0.01 A/cm2 and current-on time (TON) equal to current-off time (TOFF) of 10 ms, 100 ms, 1 s, and 15 s. The adhesive strength between apatite and Ti substrates were relatively high at TON = TOFF = 10 ms. It is considered that small calcium phosphate (C–P) crystals with low crystallinity were deposited on the Ti surface without reacting with other C–P crystals, H2O, and HCO3 in the surrounding environment. This resulted in relaxation of the lattice mismatch and enhancement of the adhesive strength between the apatite crystals and Ti substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wen, H.B., de Wijin, J.R., Cui, F.Z., de Groot, K.: Preparation of bioactive Ti6A14V surfaces by a simple method. Biomaterials 19, 215 1998CrossRefGoogle Scholar
2Okazaki, Y., Nishimura, E., Nakada, E., Kobayashi, K.: Surface analysis of Ti–15Zr–4Nb–4Ta alloy after implantation in rat tibia. Biomaterials 22, 599 2001CrossRefGoogle Scholar
3Okazaki, Y., Rao, S., Ito, Y., Tateishi, T.: Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 19, 1197 1998CrossRefGoogle ScholarPubMed
4Rolander, U., Mattsson, L., Lausmaa, J., Kasemo, B.: Anodic oxide films on titanium. Ultramicroscopy 19, 407 1986CrossRefGoogle Scholar
5Kienapfel, H., Sprey, C., Wilke, A., Griss, P.: Implant fixation by bone ingrowth. J. Arthrop. 14, 355 1999CrossRefGoogle ScholarPubMed
6Kitsugi, T., Nakamura, T., Oka, M., Senaha, Y., Goto, T., Shibuya, T.: Bone-bonding behavior of plasma-sprayed coatings of Bioglass®, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J. Biomed. Mater. Res. 30, 261 19963.0.CO;2-P>CrossRefGoogle ScholarPubMed
7Barrere, F., Vanbitterswijk, C.A., Degroot, K., Layrolle, P.: Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: Influence of magnesium. Biomaterials 23, 2211 2002CrossRefGoogle Scholar
8Miyazaki, T., Ohtsuki, C., Akioka, Y., Tanihara, M., Nakao, J., Sakaguchi, Y., Konagaya, S.: Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution. J. Mater. Sci.-Mater. Med. 14, 569 2003CrossRefGoogle Scholar
9Ban, S., Hasegawa, J.: Morphological regulation and crystal growth of hydrothermal-electrochemically deposited apatite. Biomaterials 23, 2965 2002CrossRefGoogle ScholarPubMed
10Stoch, A., Brożek, A., Kmita, G., Stoch, J., Jastrzębski, W., Rakowska, A.: Electrophoretic coating of hydroxyapatite on titanium implants. J. Mol. Struct. 596, 191 2001CrossRefGoogle Scholar
11Sena, L.A., Andrade, M.C., Rossi, A.M., Soares, G.A.: Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J. Biomed. Mater. Res. A 60, 1 2002CrossRefGoogle Scholar
12Fu, Y., Batchelor, A.W., Wang, Y., Khor, K.A.: Fretting wear behaviors of thermal sprayed hydroxyapatite (HA) coating under unlubricated conditions. Wear 217, 132 1998CrossRefGoogle Scholar
13Fu, Y., Batchelor, A.W., Khor, K.A.: Fretting wear behavior of thermal sprayed hydroxyapatite coating lubricated with bovine albumin. Wear 230, 98 1999CrossRefGoogle Scholar
14Gledhill, H.C., Turner, I.G., Doyle, C.: In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings. Biomaterials 22, 1233 2001CrossRefGoogle ScholarPubMed
15Manso, M., Jimenez, C., Morant, C., Herrero, P., Martinez-Duart, J.M.: Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials 21, 1775 2000CrossRefGoogle ScholarPubMed
16Kawashita, M., Itoh, S., Miyamoto, K., Takaoka, G.H.: Apatite formation on titanium substrates by electrochemical deposition in metastable calcium phosphate solution. J. Mater. Sci.-Mater. Med. 19, 137 2008CrossRefGoogle ScholarPubMed
17Ban, S.: Development of electrochemical apatite-coating on titanium for biological application. Phos. Res. Bull. 17, 9 2004CrossRefGoogle Scholar
18Ban, S., Maruno, S.: Effect of pH buffer on electrochemical deposition of calcium phosphate. Jpn. J. Appl. Phys. 32, 1577 1993Google Scholar
19Kawashita, M., Hayakawa, T., Takaoka, G.H.: Electrochemical deposition of apatite on titanium substrates by using pulse current. Key Eng. Mater. 361–363, 629 2008Google Scholar
20Hayakawa, T., Kawashita, M., Takaoka, G.H.: Coating of hydroxyapatite films on titanium substrates by electrodeposition under pulse current. J. Ceram. Soc. Jpn. 116, 68 2008CrossRefGoogle Scholar
21Zero, D.T., Siegel, G. Cavaretta, Fu, J., Li, H.: Effect of pyrophosphate on fluoride enhanced remineralization after an erosive challenge. Caries Res. 34, 344 2000Google Scholar
22Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24, 721 1990CrossRefGoogle ScholarPubMed
23Blumenthal, N.C.: Mechanisms of inhibition of calcification. Clin. Orthop. Relat. Res. 247, 279 1989CrossRefGoogle Scholar
24Ban, S., Iwaya, Y., Kono, H., Sato, H.: Surface modification of titanium by etching in concentrated sulfuric acid. Dent. Mater. 22, 1115 2006CrossRefGoogle ScholarPubMed
25Ban, S., Maruno, S.: Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. Biomaterials 19, 1245 1998CrossRefGoogle Scholar
26Klug, H.P., Alexander, L.E.: X-ray Diffraction Procedures 2nd ed.Wiley & Sons Inc. New York 1974 505565Google Scholar
27Monma, H.: Electrolytic depositions of calcium phosphates on substrate. J. Mater. Sci. 29, 949 1994CrossRefGoogle Scholar
28Rey, C., Collins, B., Goehl, T., Dickson, I.R., Glimcher, M.J.: The carbonate environment in bone mineral: A resolution-enhanced Fourier transform infrared spectroscopy study. Calcif. Tissue Int. 45, 157 1989CrossRefGoogle ScholarPubMed
29Fowler, B.O., Moneno, E.C., Brown, W.E.: Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch. Oral Biol. 11, 477 1966CrossRefGoogle ScholarPubMed
30Nonaka, Y., Morimoto, Y.: Characteristic and applications of amorphous chromium plating. J. Surface Finish. Soc. Jpn. 56, 329 2005CrossRefGoogle Scholar
31Yamazaki, J., Kuranaga, T., Takaba, H., Saito, N., Inoue, Y., Takai, O.: Electrochromic response of obliquely sputtered InN films. J. Surface Finish. Soc. Jpn. 57, 459 2006CrossRefGoogle Scholar
32Lin, S., LeGeros, R.Z., LeGeros, J.P.: Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method. J. Biomed. Mater. Res. A 66, 819 2003CrossRefGoogle ScholarPubMed
33Haruyama, S.: Electrochemistry for Surface Engineers 2nd ed.Maruzen Tokyo 2005 171 in JapaneseGoogle Scholar