Skip to main content Accessibility help

The effect of preexisting VC carbides on the bainite transformation in medium-carbon high-alloy steel

  • Xiaoli Zhao (a1), Lizhan Han (a2), Chuanwei Li (a1) and Jianfeng Gu (a3) (a4)


Bainite transformation in steels is influenced by various factors. In the present work, bainite transformation in medium carbon high alloyed steel was investigated focusing on the influence of preexisting VC carbides on the morphology and transformation kinetics of the subsequently formed bainite. Hot-work die steels were held at 950 °C for various times to precipitate VC carbides, then rapidly cooled from 950 to 350 °C and held at this temperature for the bainite transformation. It is found that the bainite transformation was obviously accelerated by the preexisting VC carbides precipitated at the austenite region. The precipitation of carbides leads to a decrease in carbon concentration in the matrix, which decreases the effective activation energy and increases the highest temperature for the nucleation of bainite. Besides, bainite was observed to grow beside the VC carbides. It suggests that the VC carbides in the matrix act as nucleation sites for the bainite transformation. In the specimens, the bainite transformation is accelerated, and a higher fraction of bainite is formed when there are carbides in the matrix.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Rafi, H.K., Ram, G.D.J., Phanikumar, G., and Rao, K.P.: Microstructural evolution during friction surfacing of tool steel H13. Mater. Des. 32, 82 (2011).
2.Zhou, Q., Wu, X., Shi, N., Li, J., and Min, N.: Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. Mater. Sci. Eng., A 528, 5696 (2011).
3.Li, S., Deng, L., Wu, X., Wang, H., and Min, Y.: Low-frequency internal friction investigating of the carbide precipitation in solid solution during tempering in high alloyed martensitic steel. Mater. Sci. Eng., A 527, 6899 (2010).
4.Luo, Y., Peng, J-M., Wang, H-B., and Wu, X-C.: Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel. Mater. Sci. Eng., A 527, 3433 (2010).
5.Wei, M.X., Wang, S.Q., Wang, L., Cui, X.H., and Chen, K.M.: Effect of tempering conditions on wear resistance in various wear mechanisms of H13 steel. Tribol. Int. 44, 898 (2011).
6.Luzginova, N.V., Zhao, L., and Sietsma, J.: Bainite formation kinetics in high carbon alloyed steel. Mater. Sci. Eng., A 481, 766 (2008).
7.Bakhtiari, R. and Ekrami, A.: The effect of bainite morphology on the mechanical properties of a high bainite dual phase (HBDP) steel. Mater. Sci. Eng., A 525, 159 (2009).
8.Gao, G., Zhang, H., Gui, X., Tan, Z., Bai, B., and Weng, Y.: Enhanced strain hardening capacity in a lean alloy steel treated by a “disturbed” bainitic austempering process. Acta Mater. 101, 31 (2015).
9.Tang, C.J., Shang, C.J., Liu, S.L., Guan, H.L., Misra, R.D.K., and Chen, Y.B.: Effect of volume fraction of bainite on strain hardening behavior and deformation mechanism of F/B multi-phase steel. Mater. Sci. Eng., A 731, 173 (2018).
10.Bhadeshia, H.K.D.H. and Christian, J.W.: Bainite in steels. Metall. Trans. A 21, 767 (1990).
11.Fielding, L.C.D.: The bainite controversy. Mater. Sci. Technol. 29, 383 (2013).
12.Santofimia, M.J., Caballero, F.G., Capdevila, C., García-Mateo, C., and García de Andrés, C.: Evaluation of displacive models for bainite transformation kinetics in steels. Mater. Trans. 47, 1492 (2006).
13.Chester, N.A. and Bhadeshia, H.K.D.H.: Mathematical modelling of bainite transformation kinetics. J. Phys. IV 7, C5C41 (1997).
14.Azuma, M., Fujita, N., Takahashi, M., and Iung, T.: Modelling upper and lower bainite transformation in steels. Mater. Sci. Forum 426, 1405 (2003).
15.Chang, L.C.: Microstructures and reaction kinetics of bainite transformation in Si-rich steels. Mater. Sci. Eng., A 368, 175 (2004).
16.Hillert, M., Höglund, L., and Ågren, J.: Role of carbon and alloying elements in the formation of bainitic ferrite. Metall. Mater. Trans. A 35, 3693 (2004).
17.Santofimia, M.J., Caballero, F.G., Capdevila, C., García-Mateo, C., and Andrés, C.G.d.: New model for the overall transformation kinetics of bainite. Part 1: The model. Mater. Trans. 47, 2465 (2006).
18.Santofimia, M.J., Caballero, F.G., Capdevila, C., García-Mateo, C., and Andrés, C.G.d.: New model for the overall transformation kinetics of bainite. Part 2: Validation. Mater. Trans. 47, 2473 (2006).
19.Van Bohemen, S.M.C.: Modeling start curves of bainite formation. Metall. Mater. Trans. A 42, 285 (2009).
20.van Bohemen, S.M.C. and Sietsma, J.: The kinetics of bainite and martensite formation in steels during cooling. Mater. Sci. Eng., A 527, 6672 (2010).
21.Sidhu, G., Bhole, S.D., Chen, D.L., and Essadiqi, E.: An improved model for bainite formation at isothermal temperatures. Scr. Mater. 64, 73 (2011).
22.Li, S., Zhu, R., Karaman, I., and Arróyave, R.: Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels. Acta Mater. 61, 2884 (2013).
23.Jin, X.J., Min, N., Zheng, K.Y., and Hsu, T.Y.: The effect of austenite deformation on bainite formation in an alloyed eutectoid steel. Mater. Sci. Eng., A 438, 170 (2006).
24.Gong, W., Tomota, Y., Harjo, S., Su, Y.H., and Aizawa, K.: Effect of prior martensite on bainite transformation in nanobainite steel. Acta Mater. 85, 243 (2015).
25.Navarro-López, A., Sietsma, J., and Santofimia, M.J.: Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C high-Si steel. Metall. Mater. Trans. A 47, 1028 (2016).
26.Toji, Y., Matsuda, H., and Raabe, D.: Effect of Si on the acceleration of bainite transformation by pre-existing martensite. Acta Mater. 116, 250 (2016).
27.Chen, H., Zhu, K., Zhao, L., and van der Zwaag, S.: Analysis of transformation stasis during the isothermal bainitic ferrite formation in Fe–C–Mn and Fe–C–Mn–Si alloys. Acta Mater. 61, 5458 (2013).
28.Lambers, H.G., Tschumak, S., Maier, H.J., and Canadinc, D.: Role of austenitization and pre-deformation on the kinetics of the isothermal bainitic transformation. Metall. Mater. Trans. A 40, 1355 (2009).
29.Kang, M., Park, G., Jung, J-G., Kim, B-H., and Lee, Y-K.: The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel. J. Alloys Compd. 627, 359 (2015).
30.LePera, F.S.: Improved etching technique to emphasize martensite and bainite in high-strength dual-phase steel. JOM 32, 38 (1980).
31.Mesquita, R.A., Barbosa, C.A., Morales, E.V., and Kestenbach, H.J.: Effect of silicon on carbide precipitation after tempering of H11 hot work steels. Metall. Mater. Trans. A 42, 461 (2010).
32.Fujita, N. and Bhadeshia, H.K.D.H.: Modelling simultaneous alloy carbide sequence in power plant steels. ISIJ Int. 42, 760 (2002).
33.Kim, H., Kang, J-Y., Son, D., Lee, T-H., and Cho, K-M.: Evolution of carbides in cold-work tool steels. Mater. Charact. 107, 376 (2015).
34.Angang, N., Hanjie, G., Xichun, C., and Mingbo, W.: Precipitation behaviors and strengthening of carbides in H13 steel during annealing. Mater. Trans. 56, 581 (2015).
35.Tszeng, T.C.: Autocatalysis in bainite transformations. Mater. Sci. Eng., A 293, 185 (2000).
36.van Bohemen, S.M.C.: Autocatalytic nature of the bainitic transformation in steels: A new hypothesis. Philos. Mag. 93, 388 (2013).
37.Liu, Z.Q., Miyamoto, G., Yang, Z.G., and Furuhara, T.: Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe–2Mn–C alloys. Acta Mater. 61, 3120 (2013).
38.Garcia-Mateo, C. and Bhadeshia, H.K.D.H.: Nucleation theory for high-carbon bainite. Mater. Sci. Eng., A 378, 289 (2004).
39.Chang, L.C. and Bhadeshia, H.K.D.H.: Austenite films in bainitic microstructures. Mater. Sci. Technol. 11, 874 (1995).
40.Lee, S.J., Park, J.S., and Lee, Y.K.: Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel. Scr. Mater. 59, 87 (2008).
41.Bohemen, S.M.C.V. and Hanlon, D.N.: A physically based approach to model the incomplete bainitic transformation in high-Si steels. Int. J. Mater. Res. 103, 987 (2012).
42.HajyAkbary, F., Sietsma, J., Miyamoto, G., Furuhara, T., and Santofimia, M.J.: Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel. Acta Mater. 104, 72 (2016).
43.Ravi, A.M., Sietsma, J., and Santofimia, M.J.: Exploring bainite formation kinetics distinguishing grain-boundary and autocatalytic nucleation in high and low-Si steels. Acta Mater. 105, 155 (2016).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed