Skip to main content Accessibility help

Effect of oxidation on thermal fatigue behavior of cast tungsten carbide particle/steel substrate surface composite

  • Quan Shan (a1), Zaifeng Zhou (a1), Zulai Li (a1), Yehua Jiang (a1), Fan Gao (a1) and Lei Zhang (a1)...


Cast tungsten carbide is widely used to reinforce iron or steel substrate surface composites to meet the demands of harsh wear environments due to its extremely high hardness and excellent wettability with molten steel. Cast tungsten carbide particle/steel matrix surface composites have demonstrated great potential development in applications under the abrasive working condition. The thermal shock test was used to investigate the fatigue behavior of the composites fabricated by vacuum evaporative pattern casting technique at different temperatures. At elevated temperatures, the fatigue behavior of the composites was influenced by the oxidation of tungsten carbide, producing WO3. Thermodynamic calculations showed that the W2C in the tungsten carbide particle was oxidized at an initial temperature of approximately 570 °C. The relationship between oxidation and thermal fatigue crack growth was investigated, and the results suggested that oxidation would become more significant with increasing thermal shock temperature. These findings provide a valuable guide for understanding and designing particle/steel substrate surface composites.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Lou, D., Hellman, J., Luhulima, D., Liimatainen, J., and Lindroos, V.K.: Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater. Sci. Eng., A 340, 155 (2003).
2.Sun, L., Yang, T.e., Jia, C., and Xiong, J.: VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 29, 147 (2011).
3.Huang, S.W., Samandi, M., and Brandt, M.: Abrasive wear performance and microstructure of laser clad WC/Ni layers. Wear 256, 1095 (2004).
4.Do Nascimento, A.M., Ocelík, V., Ierardi, M.C.F., and De Hosson, J.T.M.: Wear resistance of WCp/duplex stainless steel metal matrix composite layers prepared by laser melt injection. Surf. Coat. Technol. 202, 4758 (2008).
5.Rong, H., Peng, Z., Ren, X., Wang, C., Fu, Z., Qi, L., and Miao, H.: Microstructure and mechanical properties of ultrafine WC–Ni–VC–TaC–cBN cemented carbides fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 29, 733 (2011).
6.Liu, D., Li, L., Li, F., and Chen, Y.: WCp/Fe metal matrix composites produced by laser melt injection. Surf. Coat. Technol. 202, 1771 (2008).
7.Niu, L., Hojamberdiev, M., and Xu, Y.: Preparation of in situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process. J. Mater. Process. Technol. 210, 1986 (2010).
8.Li, Z., Jiang, Y., Zhou, R., Chen, Z., Shan, Q., and Tan, J.: Effect of Cr addition on the microstructure and abrasive wear resistance of WC-reinforced iron matrix surface composites. J. Mater. Res. 29, 778 (2014).
9.Li, Z., Jiang, Y., Zhou, R., Lu, D., and Zhou, R.: Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process. Wear 262, 649 (2007).
10.Sahin, Y. and Acılar, M.: Production and properties of SiCp-reinforced aluminium alloy composites. Composites, Part A 34, 709 (2003).
11.Sree Manu, K.M., Ajay Raag, L., Rajan, T.P.D., Gupta, M., and Pai, B.C.: Liquid metal infiltration processing of metallic composites: A critical review. Metall. Mater. Trans. B 47, 2799 (2016).
12.Cornsweet, T.M.: Advanced composite materials. Science 168, 433 (1970).
13.Dai, Q.L., Sun, B.B., Sui, M.L., He, G., Li, Y., Eckert, J., Luo, W.K., and Ma, E.: High-performance bulk Ti–Cu–Ni–Sn–Ta nanocomposites based on a dendrite-eutectic microstructure. J. Mater. Res. 19, 2557 (2011).
14.Wu, F.F., Zhang, Z.F., Peker, A., Mao, S.X., Das, J., and Eckert, J.: Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites. J. Mater. Res. 21, 2331 (2011).
15.Li, Z., Wang, P., Shan, Q., Jiang, Y., Wei, H., and Tan, J.: The particle shape of WC governing the fracture mechanism of particle reinforced iron matrix composites. Materials 11, 984 (2018).
16.Dash, K., Sukumaran, S., and Ray, B.C.: The behaviour of aluminium matrix composites under thermal stresses. Sci. Eng. Compos. Mater. 23, 1 (2016).
17.Knowles, A.J., Jiang, X., Galano, M., and Audebert, F.: Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J. Alloys Compd. 615, S401 (2014).
18.Mazahery, A. and Shabani, M.O.: Development of the principle of simulated natural evolution in searching for a more superior solution: Proper selection of processing parameters in AMCs. Powder Technol. 245, 146 (2013).
19.Ghorbel, E.: Interface degradation in metal-matrix composites under cyclic thermo-mechanical loading. Compos. Sci. Technol. 57, 1045 (1997).
20.Liu, C., Cheng, L., Luan, X., and Mei, H.: High-temperature fatigue behavior of SiC-coated carbon/carbon composites in oxidizing atmosphere. J. Eur. Ceram. Soc. 29, 481 (2009).
21.Sbaizero, O. and Pezzotti, G.: Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics. Mater. Sci. Eng., A 343, 273 (2003).
22.Jin, Z.H. and Batra, R.C.: Thermal shock cracking in a metal-particle-reinforced ceramic matrix composite. Eng. Fract. Mech. 62, 339 (1999).
23.Aldridge, Y.M. and Yeomans, J.A.: The thermal shock behaviour of ductile particle toughened alumina composites. J. Eur. Ceram. Soc. 19, 1769 (1998).
24.Kou, H., Li, W., Zhang, X., Shao, J., Zhang, X., Geng, P., Deng, Y., and Ma, J.: Effects of mechanical shock on thermal shock behavior of ceramics in quenching experiments. Ceram. Int. 43, 1584 (2017).
25.Li, Z., Liu, J., Du, H., Li, S., and Zhang, P.: Thermal shock resistance of dense zirconia matrix composites evaluated by indentation techniques. Mater. Sci. Eng., A 517, 154 (2009).
26.Gumula, T., Rudawski, A., Michalowski, J., and Blazewicz, S.: Fatigue behavior and oxidation resistance of carbon/ceramic composites reinforced with continuous carbon fibers. Ceram. Int. 41, 7381 (2015).
27.Basu, S.N. and Sarin, V.K.: Oxidation behavior of WC–Co. Mater. Sci. Eng., A 209, 206 (1996).
28.Casas, X.R.B., Anglada, M., Salla, J.M., and Llanes, L.: Oxidation-induced strength degradation of WC–Co hardmetals. Int. J. Refract. Met. Hard Mater. 19, 303 (2001).
29.Gu, W-H., Jeong, Y.S., Kim, K., Kim, J-C., Son, S-H., and Kim, S.: Thermal oxidation behavior of WC–Co hard metal machining tool tip scraps. J. Mater. Process. Technol. 212, 1250 (2012).
30.del Campo, L., Pérez-Sáez, R.B., González-Fernández, L., and Tello, M.J.: Kinetics inversion in isothermal oxidation of uncoated WC-based carbides between 450 and 800 °C. Corros. Sci. 51, 707 (2009).
31.Voitovich, V.B., Sverdel, V.V., Voitovich, R.F., and Golovko, E.I.: Oxidation of WC–Co, WC–Ni, and WC–Co–Ni hard metals in the temperature range 500–800 °C. Int. J. Refract. Met. Hard Mater. 14, 289 (1996).
32.Bhaumik, S.K., Balasubramaniam, R., Upadhyaya, G.S., and Vaidya, M.L.: Oxidation behaviour of hard and binder phase modified WC–10Co cemented carbides. J. Mater. Sci. Lett. 11, 1457 (1992).
33.Karimi, H., Hadi, M., Ebrahimzadeh, I., Farhang, M.R., and Sadeghi, M.: High-temperature oxidation behaviour of WC–FeAl composite fabricated by spark plasma sintering. Ceram. Int. 44, 17147 (2018).
34.Wang, S-J., Chen, C-H., Ko, R-M., Kuo, Y-C., Wong, C-H., Wu, C-H., Uang, K-M., Chen, T-M., and Liou, B-W.: Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process. Appl. Phys. Lett. 86, 263103 (2005).
35.Liang, Y. and Che, M.: Inorganic Chemical Materials Thermodynamic Data Manual, 1st ed. (Northeast University Press, Shenyang, China, 1993); pp. 88, 419.
36.Chen, W-T., Meredith, C.H., Dickey, E.C., and Trice, R.: Growth and microstructure-dependent hardness of directionally solidified WC–W2C eutectoid ceramics. J. Am. Ceram. Soc. 98, 2191 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed