Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T22:01:25.368Z Has data issue: false hasContentIssue false

Effect of niobium addition in FeCoNiCuNbx high-entropy alloys

Published online by Cambridge University Press:  04 March 2019

Rahul M.R.
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
Sumanta Samal
Affiliation:
Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
Gandham Phanikumar*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
*
a)Address all correspondence to this author. e-mail: gphani@iitm.ac.in
Get access

Abstract

In the design of high-entropy alloys (HEAs) with desired properties, identifying the effects of elements plays an important role. HEAs with eutectic microstructure can be obtained by judiciously modifying the alloy compositions. In this study, the effect of Nb addition to FeCoNiCuNbx (x = 0.5, 5, 7.5, 11.6, 15) alloys was studied by varying the Nb concentration (at.%). FeCoNiCuNb0.5 HEA shows liquid phase separation to form Cu-rich and FeCoNiCu-rich phases. Detailed solidification paths are proposed for these alloys, which show eutectic, peritectic, and pseudo quasi-peritectic reactions. Increasing Nb content promotes the liquid phase separation tendency and causes the formation of Cu-rich spheres. The effect of Nb on the FeCoNiCu-rich phase was studied based on the nanoindentation and correlated with nanohardness. The compressive deformation properties of these alloys are studied at room temperature and high temperature and correlated with microstructure. Fractography results show the mode of fracture and are correlated with the microstructure obtained.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).CrossRefGoogle Scholar
Ganji, R.S., Sai Karthik, P., Bhanu Sankara Rao, K., and Rajulapati, K.V.: Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 58 (2017).CrossRefGoogle Scholar
Huo, W., Zhou, H., Fang, F., Xie, Z., and Jiang, J.: Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater. Des. 134, 226 (2017).CrossRefGoogle Scholar
Jo, Y.H., Jung, S., Choi, W.M., Sohn, S.S., Kim, H.S., Lee, B.J., Kim, N.J., and Lee, S.: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 8, 1 (2017).CrossRefGoogle Scholar
Nair, R.B., Arora, H.S., Mukherjee, S., Singh, S., Singh, H., and Grewal, H.S.: Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultrason. Sonochem. 41, 252 (2018).CrossRefGoogle ScholarPubMed
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2016).CrossRefGoogle Scholar
Zhang, L., Zhou, Y., Jin, X., Du, X., and Li, B.: The microstructure and high-temperature properties of novel nano precipitation-hardened face centered cubic high-entropy superalloys. Scr. Mater. 146, 226 (2018).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
He, F., Wang, Z., Cheng, P., Wang, Q., Li, J., Dang, Y., Wang, J., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
Tan, Y., Li, J., Wang, J., Kolbe, M., and Kou, H.: Microstructure characterization of CoCrFeNiMnPdx eutectic high-entropy alloys. J. Alloys Compd. 731, 600 (2018).CrossRefGoogle Scholar
Wu, P.H., Liu, N., Yang, W., Zhu, Z.X., Lu, Y.P., and Wang, X.J.: Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys. Mater. Sci. Eng., A 642, 142 (2015).CrossRefGoogle Scholar
Peng, Z., Liu, N., Zhang, S.Y., Wu, P.H., and Wang, X.J.: Liquid-phase separation of immiscible CrCuxFeMoyNi high-entropy alloys. Mater. Sci. Technol. 33, 1352 (2017).CrossRefGoogle Scholar
He, F., Wang, Z., Wu, Q., Li, J., Wang, J., and Liu, C.T.: Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 126, 15 (2017).CrossRefGoogle Scholar
Munitz, A., Kaufman, M.J., and Abbaschian, R.: Liquid phase separation in transition element high entropy alloys. Intermetallics 86, 59 (2017).CrossRefGoogle Scholar
Lu, Y., Jiang, H., Guo, S., Wang, T., Cao, Z., and Li, T.: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).CrossRefGoogle Scholar
Chen, R., Qin, G., Zheng, H., Wang, L., Su, Y., Chiu, Y., Ding, H., Guo, J., and Fu, H.: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 144, 129 (2018).CrossRefGoogle Scholar
Beyramali Kivy, M., Asle Zaeem, M., and Lekakh, S.: Investigating phase formations in cast AlFeCoNiCu high entropy alloys by combination of computational modeling and experiments. Mater. Des. 127, 224 (2017).CrossRefGoogle Scholar
Guo, Y., Liu, L., Zhang, Y., Qi, J., Wang, B., Zhao, Z., Shang, J., and Xiang, J.: A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys. J. Mater. Res. 33, 32583265 (2018).CrossRefGoogle Scholar
Wang, W.L., Hu, L., Luo, S.B., Meng, L.J., Geng, D.L., and Wei, B.: Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy. Intermetallics 77, 41 (2016).CrossRefGoogle Scholar
He, F., Wang, Z., Niu, S., Wu, Q., Li, J., Wang, J., Liu, C.T., and Dang, Y.: Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. J. Alloys Compd. 667, 53 (2016).CrossRefGoogle Scholar
Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des. 115, 479 (2017).CrossRefGoogle Scholar
Jang, M.J., Praveen, S., Sung, H.J., Bae, J.W., Moon, J., and Kim, H.S.: High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 730, 242 (2018).CrossRefGoogle Scholar
Wu, Y., Si, J., Lin, D., Wang, T., Wang, W.Y., Wang, Y., Liu, Z., and Hui, X.: Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater. Sci. Eng., A 724, 249 (2018).CrossRefGoogle Scholar
Samal, S., Rahul, M.R., Kottada, R.S., and Phanikumar, G.: Hot deformation behaviour and processing map of Co–Cu–Fe–Ni–Ti eutectic high entropy alloy. Mater. Sci. Eng., A 664, 227 (2016).CrossRefGoogle Scholar
Wani, I.S., Bhattacharjee, T., Sheikh, S., Clark, I.T., Park, M.H., Okawa, T., Guo, S., Bhattacharjee, P.P., and Tsuji, N.: Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 84, 42 (2017).CrossRefGoogle Scholar
Singh, S., Wanderka, N., Murty, B.S., Glatzel, U., and Banhart, J.: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182 (2011).CrossRefGoogle Scholar
Rahul, M.R., Samal, S., Venugopal, S., and Phanikumar, G.: Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy. J. Alloys Compd. 749, 1115 (2018).CrossRefGoogle Scholar