Skip to main content Accessibility help

Effect of multiwalled carbon nanotube loading on the properties of Nafion® membranes

  • Nonhlanhla Precious Cele (a1) and Suprakas Sinha Ray (a2)


The dispersion of carbon nanotubes is one of the problems in the application of polymer nanocomposites. In this study, the effect of chemical functionalization of the carbon nanotube surface on the dispersion of the tubes within a polymer is reported. The effect of carbon nanotube weight loading on the properties of polymer membrane was also studied. Multiwalled carbon nanotubes were dispersed in Nafion® matrix by melt processing techniques to form nanocomposite membranes. The morphology, dc electrical conductivity, thermal stability, mechanical properties, and proton conductivity of these nanocomposites were investigated. Nitric acid functionalized carbon nanotubes were evenly dispersed with Nafion as observed by scanning electron microscopy. The measurements of mechanical properties indicate that this processing method and carbon nanotube loading can improve the modulus of the nanocomposites.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Xu, J.Z., Zhao, W.B., Zhu, J.J., Li, G.X., and Chen, H.Y.: Fabricating gold nanoparticle-oxide nanotube composite materials by a self-assembly method. J. Colloid Interface Sci. 290(2), 450454 (2005).
2. Yang, C., Srinivasan, S., Bocarsly, A.B., Tulyani, S., and Benzinger, J.B.: A comparison of physical properties and fuel cell performance of nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 237, 145161 (2007).
3. Shen, M. and Scott, K.: Power loss and its effect on fuel cell performance. J. Power Sources 148, 2431 (2005).
4. Lee, W., Kim, H., and Chang, H.: Nafion based organic/inorganic composite membrane for air-breathing direct methanol fuel cells. J. Membr. Sci. 292, 2934 (2007).
5. Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Gross, S., Maragno, C., and Tondello, E.: Recent trends on nanocomposites based on Cu, Ag and Au clusters. Coord. Chem. Rev. 250(11), 12941314 (2006).
6. Nuñez, G.M., Fenoglio, R.J., and Resasco, D.E.: Enhanced methane production from methanol decomposition over Pt/TiO2 catalysts. React. Kinet., Catal. Lett. 40(1), 8994 (1989).
7. Yamaguchi, T., Kuroki, H., and Miyata, F.: DMFC performances using a porefilling polymer electrolyte membrane for portable usage. Electrochem. Commun. 7, 730734 (2005).
8. Elfring, G.J. and Struchtrup, H.: Thermodynamic considerations on the stability of water in Nafion. J. Membr. Sci. 297, 190198 (2007).
9. Souza, M.M., Ribeiro, N.F., and Schmal, M.: SOFC using pure hydrogen considering air back diffusion phenomenon. Int. J. Hydrogen Energy 32(2), 423425 (2007).
10. Hontsu, S., Nakamori, M., Kato, N., Tamata, H., Ishii, J., Matsumoto, T., and Kawai, T.: Formation of hydroxyapatite thin films on surface-modified polytetrafluoroethylene substrates. J. Appl. Phys. 37, L1169L1171 (1998).
11. Shao, Y.Y., Yin, G.P., Wang, Z.B., and Gao, Y.Z.: Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. J. Power Sources 167, 235242 (2007).
12. Cele, N.P., Sinha Ray, S., Pillai, S.K., Ndwandwe, O.M., Nonjola, S., Sikhwivhilu, L., and Mathe, M.K.: Carbon nanotubes based nafion composite membranes for fuel cell applications. Fuel Cells 10, 6471 (2010).
13. Jeong, U. and Xia, Y.: Synthesis and characterization of monodispersed spherical colloids. Adv. Mater. 17(1), 102106 (2003).
14. Falk, M.: An infrared study of water in perfluorosulfonate (Nafion) membranes. Can. J. Chem. 58(1), 14961501 (1980).
15. Quezabo, S., Kwak, J.C.T., and Falk, M.: An infrared study of water-ion interactions in perfluorosulfonate (Nafion) membranes. Can. J. Chem. 62, 958966 (1984).
16. Yeager, H.L. and Steck, A.: Cation and water diffusion in nafion ion exchange membranes: Influence of polymer structure. J. Electrochem. Soc. 128(9), 18801884 (1981).
17. Xie, Q., Zhuang, Q., Wang, Q., Liu, X., Chen, Y., and Han, Z.: In situ synthesis and characterization of poly(2,5-benzoxazole)/multiwalled carbon nanotubes composites. Polymer 52(1), 52715276 (2011).
18. Berens, A.R. and Hodge, I.M.: Effects of annealing and prior history on enthalpy relaxation in glassy polymers. Macromolecules 15(3), 756761 (1982).
19. Pavlidou, S. and Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33, 11191198 (2008).
20. Shah, R.K., Kim, D.H., and Paul, D.R.: Morphology and properties of nanocomposites formed from ethylene/methacrylic acid copolymers and organoclays. Polymer 48(4), 10471057 (2007).
21. Cui, L. and Paul, D.R.: Polymer nanocomposites from organoclays: Structure and properties. Macromol. Symp. 301(1), 915 (2011).
22. Wootthikanokkhan, J. and Seeponkai, N.: Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. J. Appl. Polym. Sci. 102(6), 59415947 (2006).
23. Di Noto, V., Gliubizzi, R., Negro, E., and Pace, G.: Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. J. Phys. Chem. B 110, 2497224986 (2006).
24. Ludvigsson, M., Lindgren, J., and Tegenfeldt, J.: FTRI study of wáter in cast nafion films. J. Electrochim. Acta 45, 22672271 (2000).
25. McNallya, T., Potschke, P., Halley, P., Murphy, M., Martin, D., Bell, S.E., Brennan, G.P., Bein, D., Lemoine, P., and Quinn, J.P.: Polyethylene multiwalled carbon nanotube composites. Polymer 46, 82228233 (2005).
26. Rotkin, S.V. and Subramoney, S.: Applied Physics of Carbon Nanotubes: Fundamentals and Theory (Springer, New York, NY, 2005); pp. 156239.
27. Bikiaris, D., Vassiliou, A., Chrissafis, K., Paraskevopoulos, K.M., Jannakoudakis, A., and Docoslis, A.: Degradation of polymer composite membranes. Polym. Degrad. Stab. 93, 952959 (2008).
28. Crum, N.G., Buckley, C.P., and Bucknall, C.B.: Principles of Polymer Engineering, 2nd ed. (Oxford Science, New York, 2012).
29. Tang, H.L., Pan, M., Jiang, S.P., Wang, X.E., and Ruan, Y.Z.: Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. J. Electrochim. Acta 52, 53045311 (2007).
30. Scharfer, P., Schabel, W., and Kind, M.: Modelling of alcohol and water diffusion in fuel cell membranes-experimental validation by means of in situ Raman spectroscopy. Chem. Eng. Sci. 63, 46764684 (2008).


Related content

Powered by UNSILO

Effect of multiwalled carbon nanotube loading on the properties of Nafion® membranes

  • Nonhlanhla Precious Cele (a1) and Suprakas Sinha Ray (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.