Skip to main content Accessibility help
×
Home

Effect of electropulsing-ultrasonic surface treatment on the surface properties and the corrosion behavior of 45 steel

  • Bing Zhang (a1), Haibo Wang (a2), Shuo Zhang (a1), Guolin Song (a1), Song-Zhu Kure-Chu (a3), Xinglong Wang (a4), Jie Kuang (a2) and Guoyi Tang (a2)...
  • Please note a correction has been issued for this article.

Abstract

In the present study, the surface properties and the corrosion behavior of a nanocrystalline surface layer fabricated on 45 steel by electropulsing-ultrasonic surface treatment (EUST) were investigated. EUST offered the specimen a smooth (R a < 0.33 µm) surface layer with nanoscale grains and compressive stress by the synergistic effect of high-energy electropulsing processing and ultrasonic impact. Open-circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy studies indicated that EUST-induced surface nanocrystallization decreased the corrosion susceptibility of 45 steel in 3.5 wt% NaCl aqueous solution, leading to a decrease in corrosion current density (i corr) by 55% and an increase in charge transfer resistance (R ct) by 36%. The enhancement in surface comprehensive mechanical properties and corrosion resistance can be explained in terms of the decrease in surface roughness, the extent of grain refinement and the change of stress state, which were closely related to the introduction of high-energy electropulsing processing.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: tanggy@mail.tsinghua.edu.cn

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

Footnotes

References

Hide All
1. Dai, K., Villegas, J., Stone, Z., and Shaw, L.: Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Mater. 52(20), 5771 (2004).
2. Murashkin, M.Y., Sabirov, I., Kazykhanov, V.U., Bobruk, E.V., Dubravina, A.A., and Valiev, R.Z.: Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 48, 4501 (2013).
3. Yin, F., Hu, S., Hua, L., Wang, X., Suslov, S., and Han, Q.: Surface nanocrystallization and numerical modeling of low carbon steel by means of ultrasonic shot peening. Metall. Mater. Trans. A 46(3), 1253 (2015).
4. Lu, K. and Lu, J.: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375–377, 38 (2004).
5. Ya, M., Xing, Y., Dai, F., Lu, K., and Lu, J.: Study of residual stress in surface nanostructured AISI 316L stainless steel using two mechanical methods. Surf. Coat. Technol. 168(2), 148 (2003).
6. Yanbin, J., Guoyi, T., Lei, G., Shaonan, W., Zhuohui, X., Chanhung, S., and Yaohua, Z.: Effect of electropulsing treatment on solid solution behavior of an aged Mg alloy AZ61 strip. J. Mater. Res. 23(10), 2685 (2008).
7. Guan, L., Tang, G.Y., Chu, P.K., and Jiang, Y.B.: Enhancement of ductility in Mg–3Al–1Zn alloy with tilted basal texture by electropulsing. J. Mater. Res. 24(12), 3674 (2009).
8. Hamal, D.B. and Klabunde, K.J.: Valence state and catalytic role of cobalt ions in cobalt TiO2 nanoparticle photocatalysts for acetaldehyde degradation under visible light. J. Phys. Chem. C 115(35), 17359 (2011).
9. Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., and Lu, K.: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50(18), 4603 (2002).
10. Han, H., Gao, Y., Zhang, Y., Du, S., and Liu, H.: Effect of magnetic field distribution of friction surface on friction and wear properties of 45 steel in DC magnetic field. Wear 328–329, 422 (2015).
11. Oguzie, E.E., Li, Y., and Wang, F.: Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel: Synergistic effect of methionine and iodide ion. Electrochim. Acta 52(24), 6988 (2007).
12. Laleh, M. and Kargar, F.: Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J. Alloys Compd. 509(37), 9150 (2011).
13. Oguzie, E.E., Wang, S.G., Li, Y., and Wang, F.H.: Corrosion and corrosion inhibition characteristics of bulk nanocrystalline ingot iron in sulphuric acid. J. Solid State Electrochem. 12(6), 721 (2008).
14. Jelliti, S., Richard, C., Retraint, D., Roland, T., Chemkhi, M., and Demangel, C.: Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf. Coat. Technol. 224, 82 (2013).
15. Yang, J.X., Cui, F.Z., Lee, I-S., Zhang, Y., Yin, Q.S., Xia, H., and Yang, S.X.: In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J. Biomater. Appl. 27(2), 153 (2011).
16. Yanbin, J., Guoyi, T., Chanhung, S., Yaohua, Z., Lei, G., Shaonan, W., and Zhuohui, X.: Improved ductility of aged Mg–9Al–1Zn alloy strip by electropulsing treatment. J. Mater. Res. 24(5), 1810 (2009).
17. Ye, X., Tang, G., Song, G., and Kuang, J.: Effect of electropulsing treatment on the microstructure, texture, and mechanical properties of cold-rolled Ti–6Al–4V alloy. J. Mater. Res. 29(14), 1500 (2014).
18. Rahnama, A. and Qin, R.S.: The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel. Mater. Sci. Eng., A 627, 145 (2015).
19. Lu, W.J., Zhang, X.F., and Qin, R.S.: Electropulsing-induced strengthening of steel at high temperature. Philos. Mag. Lett. 94(11), 688 (2014).
20. Kuang, J., Li, X., Ye, X., Tang, J., Liu, H., Wang, J., and Tang, G.: Microstructure and texture evolution of magnesium alloys during electropulse treatment. Metall. Mater. Trans. A 46(4), 1789 (2015).
21. Ye, X., Liu, T., Ye, Y., Wang, H., Tang, G., and Song, G.: Enhanced grain refinement and microhardness of Ti–Al–V alloy by electropulsing ultrasonic shock. J. Alloys Compd. 621, 66 (2015).
22. Ye, X., Kuang, J., Li, X., and Tang, G.: Microstructure, properties and temperature evolution of electro-pulsing treated functionally graded Ti–6Al–4V alloy strip. J. Alloys Compd. 599, 1 (2014).
23. Maawad, E., Brokmeier, H-G., Wagner, L., Sano, Y., and Genzel, C.: Investigation on the surface and near-surface characteristics of Ti–2.5Cu after various mechanical surface treatments. Surf. Coat. Technol. 205(12), 3644 (2011).
24. Ye, X., Yang, Y., and Tang, G.: Microhardness and corrosion behavior of surface gradient oxide coating on the titanium alloy strips under high energy electro-pulsing treatment. Surf. Coat. Technol. 258, 467 (2014).
25. Ye, X., Tse, Z.T.H., Tang, G., and Song, G.: The effect of electropulsing induced gradient topographic oxide coating of Ti–Al–V alloy strips on the fibroblast adhesion and growth. Surf. Coat. Technol. 261, 213 (2015).
26. Ye, X., Wang, L., Tse, Z.T.H., Tang, G., and Song, G.: Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti–6Al–4V alloy. Mater. Sci. Eng., C 49, 851 (2015).
27. Balusamy, T., Kumar, S., and Sankara Narayanan, T.S.N.: Effect of surface nanocrystallization on the corrosion behavior of AISI 409 stainless steel. Corros. Sci. 52(11), 3826 (2010).
28. Kumar, S. and Sankara Narayanan, T.S.N.: Corrosion behavior of Ti–15Mo alloy for dental implant applications. J. Dent. 36(7), 500 (2008).
29. Ye, X., Li, X., Song, G., and Tang, G.: Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses. J. Alloys Compd. 616, 173 (2014).
30. Zhou, Y., Zhang, W., Wang, B., He, G., and Guo, J.: Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing. J. Mater. Res. 17(08), 2105 (2002).
31. Ye, X., Yang, Y., Song, G., and Tang, G.: Enhancement of ductility, weakening of anisotropy behavior and local recrystallization in cold-rolled Ti–6Al–4V alloy strips by high-density electropulsing treatment. Appl. Phys. A: Mater. Sci. Process. 117(4), 2251 (2014).
32. Wang, F., Huo, D., Li, S., and Fan, Q.: Inducing TiAl3 in titanium alloys by electric pulse heat treatment improves mechanical properties. J. Alloys Compd. 550, 133 (2013).
33. Ouici, H.B., Benali, O., Harek, Y., Larabi, L., Hammouti, B., and Guendouzi, A.: The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 5% hydrochloric acid. Res. Chem. Intermed. 39(7), 3089 (2013).
34. Bılgıç, S. and Çalıskan, N.: The effect of N-(1-toluidine) salicylaldimine on the corrosion of austenitic chromium–nickel steel. Appl. Surf. Sci. 152(1), 107 (1999).
35. Arslan, E., Totik, Y., Demirci, E., and Alsaran, A.: Influence of surface roughness on corrosion and tribological behavior of CP-Ti after thermal oxidation treatment. J. Mater. Eng. Perform. 19(3), 428 (2010).
36. Yin, S., Li, D.Y., and Bouchard, R.: Effects of strain rate of prior deformation on corrosion and corrosive wear of AISI 1045 steel in a 3.5 Pct NaCl solution. Metall. Mater. Trans. A 38(5), 1032 (2007).
37. Hassani, S., Raeissi, K., Azzi, M., Li, D., Golozar, M.A., and Szpunar, J.A.: Improving the corrosion and tribocorrosion resistance of Ni–Co nanocrystalline coatings in NaOH solution. Corros. Sci. 51(10), 2371 (2009).
38. Srinivasan, P.B., Zettler, R., Blawert, C., and Dietzel, W.: Stress corrosion cracking of AZ61 magnesium alloy friction stir weldments in ASTM D1384 solution. Corros. Eng., Sci. Technol. 44, 477 (2009).
39. LÓpez, D.A., Simison, S.N., and de Sànchez, S.R.: The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim. Acta 48(7), 845 (2003).
40. Lebrini, M., Bentiss, F., Vezin, H., and Lagrenée, M.: The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: Structure-activity correlation. Corros. Sci. 48(5), 1279 (2006).

Keywords

Effect of electropulsing-ultrasonic surface treatment on the surface properties and the corrosion behavior of 45 steel

  • Bing Zhang (a1), Haibo Wang (a2), Shuo Zhang (a1), Guolin Song (a1), Song-Zhu Kure-Chu (a3), Xinglong Wang (a4), Jie Kuang (a2) and Guoyi Tang (a2)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: