Skip to main content Accessibility help
×
Home

Effect of deposition pressure on the microstructure and thermoelectric properties of epitaxial ScN(001) thin films sputtered onto MgO(001) substrates

  • Polina V. Burmistrova (a1), Dmitri N. Zakharov (a2), Tela Favaloro (a3), Amr Mohammed (a4), Eric A. Stach (a5), Ali Shakouri (a6) and Timothy D. Sands (a7)...

Abstract

Four epitaxial ScN(001) thin films were successfully deposited on MgO(001) substrates by dc reactive magnetron sputtering at 2, 5, 10, and 20 mTorr in an Ar/N2 ambient atmosphere at 650 °C. The microstructure of the resultant films was analyzed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrical resistivity, electron mobility and concentration were measured using the room temperature Hall technique, and temperature dependent in-plain measurements of the thermoelectric properties of the ScN thin films were performed. The surface morphology and film crystallinity significantly degrade with increasing deposition pressure. The ScN thin film deposited at 20 mTorr exhibits the presence of <221> oriented secondary grains resulting in decreased electric properties and a low thermoelectric power factor of 0.5 W/mK2 at 800 K. The ScN thin films grown at 5 and 10 mTorr are single crystalline, yielding the power factor of approximately 2.5 W/mK2 at 800 K. The deposition performed at 2 mTorr produces the highest quality ScN thin film with the electron mobility of 98 cm2 V−1 s−1 and the power factor of 3.3 W/mK2 at 800 K.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: polina.burmistrova@stonybrook.edu

References

Hide All
1. Gschneider, K.A., Melson, G.A., Melson, D.A., Youngblood, D.H., and Schock, H.H.: Scandium: Its Occurrence (Academic Press, London, 1975), p. 165.
2. Gall, D., Petrov, I., Madsen, L.D., Sundgren, J-E., and Greene, J.E.: Microstructure and electronic properties of the refractory semiconductor ScN grown on MgO(001) by ultra-high vacuum reactive magnetron sputter deposition. J. Vac. Sci. Technol., A 16, 2411 (1998).
3. Gall, D., Stadele, M., Jarrendahl, K., Petrov, I., Desjardins, P., Haasch, R.T., Lee, T-Y., and Greene, J.E.: Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations. Phys. Rev. B 63, 125119 (2001).
4. Gall, D., Petrov, I., Hellgren, N., Hultman, L., Sundgren, J.E., and Greene, J.E.: Growth of poly- and single-crystal ScN on MgO(001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties. J. Appl. Phys. 84, 6034 (1998).
5. Saha, B., Acharya, J., Sands, T.D., and Waghmare, U.V.: Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: A first-principles study. J. Appl. Phys. 107, 033715 (2010).
6. Moram, M.A., Barber, Z.H., and Humphreys, C.J.: The effect of oxygen incorporation in sputtered scandium nitride films. Thin Solid Films 516, 8569 (2008).
7. Dismukes, J.P., Yim, W.M., and Ban, V.S.: Epitaxial growth and properties of semiconducting ScN. J. Cryst. Growth 13, 365 (1972).
8. Gregoire, J.M., Kirby, S.D., Scopelianos, G.E., Lee, F.H., and van Dover, R.B.: High mobility single crystalline ScN and single-orientation epitaxial YN on sapphire via magnetron sputtering. J. Appl. Phys. 104, 074913 (2008).
9. Gregoire, J.M., Kirby, S.D., Turk, M.E., and van Dover, R.B.: Structural, electronic and optical properties of (Sc, Y) N solid solutions. Thin Solid Films 517, 1607 (2009).
10. Burmistrova, P.V., Maassen, J., Favaloro, T., Saha, B., Salamat, S., Koh, Y.R., Lundstrom, K.S., Shakouri, A., and Sands, T.D.: Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(100) substrates. J. Appl. Phys. 113, 153704 (2013).
11. Kerdsongpanya, S., van Nong, N., Pryds, N., Zukauskaite, A., Jensen, J., Birch, J., Lu, J., Hultman, L., Wingqvist, G., and Eklund, P.: Anomalously high thermoelectric power factor in epitaxial ScN thin films. Appl. Phys. Lett. 99, 232113 (2011).
12. Moram, M.A., Novikov, S.V., Kent, A.J., Nörenberg, C., Foxon, C.T., and Humphreys, C.J.: Growth of epitaxial thin films of scandium nitride on 100-oriented silicon. J. Cryst. Growth 310, 2746 (2008).
13. King, S.W., Davis, R.F., and Nemanich, R.J.: Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces. J. Vac. Sci. Technol., A 32, 061504 (2014).
14. King, S.W., Nemanich, R.J., and Davis, R.J.: Valence and conduction band alignment at ScN interfaces with 3C-SiC (111) and 2H-GaN (0001). Appl. Phys. Lett. 105, 081606 (2014).
15. Oshima, Y., Villora, E.G., and Shimamura, K.: Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers. J. Appl. Phys. 115, 153508 (2014).
16. Kerdsongpanya, S., Alling, B., and Eklund, P.: Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties. Phys. Rev. B 86, 195140 (2012).
17. Moram, M.A., Joyce, T.B., Chalker, P.R., Barber, Z.H., and Humphreys, C.J.: Microstructure of epitaxial scandium nitride films grown on silicon. Appl. Surf. Sci. 252, 8385 (2006).
18. Moram, M.A., Kappers, M.J., and Humphreys, C.J.: Low dislocation density nonpolar (11–20) GaN films achieved using scandium nitride interlayers. Phys. Status Solidi C 7, 1778 (2010).
19. Moram, M.A., Zhang, Y., Kappers, M.J., Barber, Z.H., and Humphreys, C.J.: Dislocation reduction in gallium nitride films using scandium nitride interlayers. Appl. Phys. Lett. 91, 152101 (2007).
20. Zebarjadi, M., Bian, Z., Singh, R., Shakouri, A., Wortman, R., Rawat, V., and Sands, T.: Thermoelectric transport in a ZrN/ScN superlattice. J. Electron. Mater. 38, 960 (2009).
21. Rawat, V. and Sands, T.D.: Growth of TiN/GaN metal/semiconductor multilayers by reactive pulsed laser deposition. J. Appl. Phys. 100, 064901 (2006).
22. Rawat, V., Koh, Y.K., Cahill, D.G., and Sands, T.D.: Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices. J. Appl. Phys. 105, 024909 (2009).
23. Kerdsongpanya, S., Alling, B., and Eklund, P.: Phase stability of ScN-based solid solutions for thermoelectric applications from first-principles calculations. J. Appl. Phys. 114, 073512 (2013).
24. Deng, R., Evans, S.R., and Gall, D.: Bandgap in Al1-xScxN. Appl. Phys. Lett. 102, 112103 (2013).
25. Hoglund, C., Bareno, J., Birch, J., Alling, B., Czigany, Z., and Hultman, L.: Cubic Sc1−x Al x N solid solution thin films deposited by reactive magnetron sputter epitaxy onto ScN(111). J. Appl. Phys. 105, 113517 (2009).
26. Hoglund, C., Birch, J., Alling, B., Bareno, J., Czigany, Z., Persson, P.O.A., Wingqvist, G., Zukauskaite, A., and Hultman, L.: Increased electromechanical coupling in w-ScxAl1-xN. J. Appl. Phys. 107, 1235515 (2010).
27. Moram, M.A. and Zhang, S.: ScGaN and ScAlN: Emerging nitride materials. J. Mater. Chem. A 17, 6042 (2014).
28. Burmistrova, P.V.: Microstructure and thermoelectric properties of ScN thin films and metal/ScN superlattices for high-temperature energy conversion. Ph.D. Dissertation, Purdue University, West Lafayette, 2014.
29. Gall, D., Petrov, I., Desjardins, P., and Greene, J.E.: Microstructural evolution and Poisson ratio of epitaxial ScN grown on TiN(001)/MgO(001) by ultra-high vacuum reactive magnetron sputter deposition. J. Appl. Phys. 86, 5524 (1999).
30. Stroscio, J.A., Pierce, D.T., Stiles, M.D., Zangwill, A., and Sander, L.M.: Coarsening of unstable surface features during Fe (001) homoepitaxy. Phys. Rev. Lett. 75, 4246 (1995).
31. Karr, B.W., Petrov, I., Cahill, D.G., and Greene, J.E.: Morphology of epitaxial TiN(001) grown by magnetron sputtering. Appl. Phys. Lett. 70, 1703 (1997).
32. Lee, N.E., Cahill, D.G., and Greene, J.E.: Evolution of surface roughness in epitaxial Si0.7Ge0.3(001) as a function of growth temperature (200-600°C) and Si(001) substrate miscut. J. Appl. Phys. 80, 2199 (1996).
33. Ehrlich, G. and Hudda, F.G.: Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 44, 1039 (1966).
34. Wang, S.C. and Ehrlich, G.: Adatom motion to lattice steps: A direct view. Phys. Rev. Lett. 70, 41 (1993).
35. Golzhauser, A. and Ehrlich, G.: Atom movement and binding on surface clusters: Pt on Pt(111) clusters. Phys. Rev. Lett. 77, 1334 (1996).
36. Leal, F.F., Ferreira, S.C., and Ferreira, S.O.: Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height. J. Phys.: Condens. Matter 23, 292201 (2011).
37. Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954).

Effect of deposition pressure on the microstructure and thermoelectric properties of epitaxial ScN(001) thin films sputtered onto MgO(001) substrates

  • Polina V. Burmistrova (a1), Dmitri N. Zakharov (a2), Tela Favaloro (a3), Amr Mohammed (a4), Eric A. Stach (a5), Ali Shakouri (a6) and Timothy D. Sands (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed