Skip to main content Accessibility help
×
Home

Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films

  • R. Mitra (a1), A. Madan (a2), R. A. Hoffman (a2), W- A. Chiou (a3) and J. R. Weertman (a3)...

Abstract

Al–Ti multilayered films (12 at.% Ti) with bilayer period of 16 nm were deposited by magnetron sputtering. The films were annealed in vacuum at 350 or 400 °C between 2 and 24 h. During annealing, a diffusion-controlled chemical reaction between Al and Ti layers led to Al3Ti precipitation. Differential thermal analysis studies showed an exothermic reaction associated with Al3Ti formation, taking place between 320 and 390 °C, depending on the heating rate. The evolution of microstructure with annealing was examined with transmission electron microscopy and x-ray diffraction. The hardness and residual stress of the films in the as-deposited and annealed conditions were studied in relation to the microstructural changes on annealing.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films
      Available formats
      ×

Copyright

References

Hide All
1.Rittner, M.N., Weertman, J.R., and Eastman, J.A., Acta Mater. 44, 1271 (1996).
2.Agnew, S.R., Elliot, B.R., Youngdahl, C.J., Hernker, K.J., and Weertman, J.R., in Modeling of Structure and Mechanics of Materials from Microscale to Product, edited by Carstensen, J.V., Leffers, T., Lorentzen, T., Pedersen, O.B., S⊘rensen, B.F. and Winther, G. (Ris⊘ National Laboratory, Roskilde, Denmark, 1998), p. 1.
3.Colgan, E.G., Mater. Sci. Rep. 5, 1 (1990).
4.Van Loo, F.J.J. and Reick, G.D., Acta Metall. 21, 61 (1973).
5.Wittmer, M., Le Goues, F., and Huang, H-C.W., J. Electrochem. Soc. 132, 1450 (1985).
6.Zhao, X.A., So, F.C.T., and Nicolet, M-A., J. Appl. Phys. 63, 2800 (1998).
7.Mingard, K.P. and Cantor, B., J. Mater. Res. 8, 274 (1993).
8.Lever, R.F., Howard, J.K., Chu, W.K., and Smith, P.J., J. Vac. Sci. Technol. 14, 158 (1977).
9.Colgan, E.G. and Mayer, J.W., J. Mater. Res. 4, 815 (1989).
10.Banerjee, R., Zhang, X.D., Dregia, S.A., and Fraser, H.L., in Nanophase and Nanocomposite Materials II, edited by Komarreni, S., Parker, J.C., and Wollenberger, H.J. (Mater. Res. Soc. Symp. Proc. 457, Pittsburgh, PA, 1997) p. 309.
11.Maugis, P., Blaise, G., and Philibert, J., in Interface Dynamics and Growth, edited by Liang, K.S., Anderson, M.P., Bruinsma, R.F., and Scoles, G. (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992), p. 679.
12.Bower, R.W., Appl. Phys. Lett. 23, 99 (1973).
13.Colgan, E.G., Nastasi, M., and Mayer, J.W., J. Appl. Phys. 58, 4125 (1985).
14.Eizenberg, M., Thompson, R.D., and Tu, K.N., J. Appl. Phys. 53, 6891 (1982).
15.Hong, Q.Z., Lilientield, D.A., and Mayer, J.W., J. Appl. Phys. 64, 4478 (1988).
16.Matsui, T., Morii, K., and Nakayama, Y., Scripta Metall. Mater. 24, 1149 (1990).
17.Colgan, E.G. and Mayer, J.W., J. Mater. Res. 4, 815 (1989).
18.Tardy, J. and Tu, K.N., Phys. Rev. B 32, 2070 (1985).
19.Colgan, E.G. and Mayer, J.W., Nucl. Inst. Methods B 17, 242 (1986).
20.Michaelsen, C., Wobhlert, S., Bormann, R., and Barmak, K., in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J.S., Park, B., Greer, A.L., and Stephenson, G.B. (Mater. Res. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 245.
21.Mitra, R., Madan, A., Hoffman, R.A., Chiou, W-A., and Weertman, J.R., in Thin Films, Stresses and Mechanical Proper-ties VIII, edited by Vinci, R., Kraft, O., Moody, N., Besser, P., and Shaffer II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA), 43.
22.Stoney, G.G., Proc. Roy. Soc. London A82, 172 (1909).
23.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).
24.Ahuja, R. and Fraser, H.L., JOM 46, 35 (1994).
25.Banerjee, R., Dregia, S.A., and Fraser, H.L., Acta Mater. 47, 4225 (1999).
26.Schwarzer, R.A., in Trends and New Applications of Thin Films, edited by H. Hoffman (Trans. Tech. Publications, Uetikon-Zuerich, Switzerland, 1998).
27.Mitra, R., Hoffman, R.A., Madan, A., and Weertman, J.R., J. Mater. Res. 16, 1010 (2001).
28.Banerjee, R., Ahuja, R., and Fraser, H.L., Phys. Rev. Lett. 76, 3778 (1996).
29.Bonevich, J., van Heerden, D., and Josell, D., J. Mater. Res. 14, 1977 (1999).
30.van Hardeen, D., Josell, D., and Shectman, D., Acta Mater. 44, 297 (1996).
31. Powder Diffraction File, Card Nos. 4-787, 5-682, Inorganic Phases, JCPDS International Centre for Diffraction Data (Swarthmore, PA, 1989).
32.Banerjee, R., Zhang, X-D., Dregia, S.A., and Fraser, H.L., Acta Mater. 47, 1153 (1999).
33.Dregia, S.A., Banerjee, R., and Fraser, H.L., Scripta Mater. 39, 217 (1998).
34.Barin, I., Thermochemical Data of Pure Substances (VCH, Wein-heim, Germany, 1989), p. 71.
35.Bené, R.W., Appl. Phys. Lett. 41, 529 (1982).
36.Ouchi, K-I., lijima, Y., and Hirano, K-I., in Titanium ’80 Science and Technology, edited by Kimura, H. and O. Izumi (Proc. 4th Int. Conf.Titanium, Kyoto, Japan, TMS, Warrendale, PA, 1980), p. 559.
37.Haugen, E.B., Probabilistic Approaches to Design (Wiley, New York, 1968), p. 47.
38.Kissinger, H.E., Analyt. Chem. 29, 1702 (1957).
39.Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L., Acta Mater. 47, 2455 (1999).
40.Ruud, J.A., Witvrouw, A., and Spaepen, F., J. Appl. Phys. 74, 2517 (1993).
41.Misra, A., Kung, H., Mitchell, T.E., and Nastasi, M., J. Mater. Res. 15, 756 (2000).
42.Bain, J.A., Chyung, L.J., Brennan, S., and Clemens, B.M., Phys. Rev. B 44, 1184 (1991).
43.Cammarata, R.C. and Sieradzki, K., Phys. Rev. Lett. 62, 2005 (1989).
44.Gardner, D.S., Michalka, T.L., Flinn, P.A., Barbee, T.W. Jr., Saraswat, K.C., and Meindl, J.D., in Proc. 2nd Int. IEEE VLSI Multilevel Interconnection Conf, (IEEE, New York, 1985), p.102.

Related content

Powered by UNSILO

Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films

  • R. Mitra (a1), A. Madan (a2), R. A. Hoffman (a2), W- A. Chiou (a3) and J. R. Weertman (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.