Skip to main content Accessibility help
×
Home

Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr

  • Tongjai Chookajorn (a1), Mansoo Park (a2) and Christopher A. Schuh (a2)

Abstract

Grain boundary (GB) segregation can markedly improve the stability of nanostructured alloys, where the fraction of GB sites is inherently large. Here, we explore the concept of entropically supported GB segregation in alloys with a tendency to phase-separate and its role in stabilizing nanostructures therein. These duplex nanocrystalline alloys are notably different, both in a structural and thermodynamic sense, from the previously studied “classical” nanocrystalline alloys, which are solid solutions with GB segregation of solute. Experiments are conducted on the W–Cr system, in which nanoduplex structures are expected. Upon heating ball-milled W–15 at.% Cr up to 950 °C, a nanoscale Cr-rich phase was found along the GBs. These precipitates mostly dissolved into the W-rich grains leaving behind Cr-enriched GBs upon further heating to 1400 °C. The presence of Cr-rich nanoprecipitates and GB segregation of Cr is in line with prediction from our Monte Carlo simulation when GB states are incorporated into the alloy thermodynamics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr
      Available formats
      ×

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: tongjai@mit.edu

Footnotes

Hide All
b)

Equal contributions.

This paper has been selected as an Invited Feature Paper.

Contributing Editor: Suk-Joong L. Kang

Footnotes

References

Hide All
1. Zhao, Y., He, D.W., Daemen, L.L., Shen, T.D., Schwarz, R.B., Zhu, Y., Bish, D.L., Huang, J., Zhang, J., Shen, G., Qian, J., and Zerda, T.W.: Superhard B–C–N materials synthesized in nanostructured bulks. J. Mater. Res. 17(12), 3139 (2002).
2. Lei, Y., Ito, Y., Browning, N.D., and Mazanec, T.J.: Segregation effects at grain boundaries in fluorite-structured ceramics. J. Am. Ceram. Soc. 85(9), 2359 (2002).
3. Anselmi-Tamburini, U., Garay, J.E., Munir, Z.A., Tacca, A., Maglia, F., Chiodelli, G., and Spinolo, G.: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies. J. Mater. Res. 19(11), 3263 (2004).
4. Matsui, K., Ohmichi, N., Ohgai, M., Yoshida, H., and Ikuhara, Y.: Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal. J. Mater. Res. 21(09), 2278 (2006).
5. Buonassisi, T., Istratov, A.A., Pickett, M.D., Heuer, M., Kalejs, J.P., Hahn, G., Marcus, M.A., Lai, B., Cai, Z., Heald, S.M., Ciszek, T.F., Clark, R.F., Cunningham, D.W., Gabor, A.M., Jonczyk, R., Narayanan, S., Sauar, E., and Weber, E.R.: Chemical natures and distributions of metal impurities in multicrystalline silicon materials. Prog. Photovoltaics 14(6), 513 (2006).
6. Biswas, K., He, J., Blum, I.D., Wu, C-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., and Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414 (2012).
7. Bechtle, S., Kumar, M., Somerday, B.P., Launey, M.E., and Ritchie, R.O.: Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 57(14), 4148 (2009).
8. Watanabe, T. and Tsurekawa, S.: The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 47(15–16), 4171 (1999).
9. Shen, T.D., Schwarz, R.B., Feng, S., Swadener, J.G., Huang, J.Y., Tang, M., Zhang, J., Vogel, S.C., and Zhao, Y.: Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Mater. 55(15), 5007 (2007).
10. Chen, H-P., Kalia, R.K., Kaxiras, E., Lu, G., Nakano, A., Nomura, K-i., van Duin, A.C., Vashishta, P., and Yuan, Z.: Embrittlement of metal by solute segregation-induced amorphization. Phys. Rev. Lett. 104(15), 155502 (2010).
11. Luo, J., Cheng, H., Asl, K.M., Kiely, C.J., and Harmer, M.P.: The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333(6050), 1730 (2011).
12. Li, Y.J., Choi, P., Goto, S., Borchers, C., Raabe, D., and Kirchheim, R.: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Mater. 60(9), 4005 (2012).
13. Herbig, M., Raabe, D., Li, Y., Choi, P., Zaefferer, S., and Goto, S.: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112(12), 126103 (2014).
14. Povstugar, I., Choi, P-P., Neumeier, S., Bauer, A., Zenk, C.H., Göken, M., and Raabe, D.: Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Mater. 78, 78 (2014).
15. Chookajorn, T. and Schuh, C.A.: Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at.% Ti. Acta Mater. 73, 128 (2014).
16. Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3233 (2007).
17. Choi, S-Y., Yoon, D-Y., and Kang, S-J.L.: Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate. Acta Mater. 52(12), 3721 (2004).
18. Ruan, S., Torres, K.L., Thompson, G.B., and Schuh, C.A.: Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al–Mn alloys. Ultramicroscopy 111(8), 1062 (2011).
19. Schuh, C.A., Kumar, M., and King, W.E.: Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51(3), 687 (2003).
20. Zheng, S., Beyerlein, I.J., Carpenter, J.S., Kang, K., Wang, J., Han, W., and Mara, N.A.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013).
21. Zheng, S., Carpenter, J.S., McCabe, R.J., Beyerlein, I.J., and Mara, N.A.: Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci. Rep. 4, 16 (2014).
22. Johnson, O.K. and Schuh, C.A.: The triple junction hull: Tools for grain boundary network design. J. Mech. Phys. Solids 69, 2 (2014).
23. Beyerlein, I.J., Zhang, X., and Misra, A.: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44(1), 329 (2014).
24. Weissmüller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3(1–6), 261 (1993).
25. Weissmüller, J.: Alloy thermodynamics in nanostructures. J. Mater. Res. 9(01), 4 (1994).
26. Weissmüller, J.: Some basic notions on nanostructured solids. Mater. Sci. Eng., A 179, 102 (1994).
27. Kirchheim, R.: Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).
28. Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).
29. Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater. 55(15), 5139 (2007).
30. Millett, P.C., Selvam, R.P., Bansal, S., and Saxena, A.: Atomistic simulation of grain boundary energetics – Effects of dopants. Acta Mater. 53(13), 3671 (2005).
31. Millett, P.C., Selvam, R.P., and Saxena, A.: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54(2), 297 (2006).
32. Millett, P.C., Selvam, R.P., and Saxena, A.: Stabilizing nanocrystalline materials with dopants. Acta Mater. 55(7), 2329 (2007).
33. Raabe, D., Herbig, M., Sandlöbes, S., Li, Y., Tytko, D., Kuzmina, M., Ponge, D., and Choi, P.P.: Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18(4), 253 (2014).
34. Tang, M., Carter, W.C., and Cannon, R.M.: Grain boundary transitions in binary alloys. Phys. Rev. Lett. 97(7), 075502 (2006).
35. Dillon, S.J., Tang, M., Carter, W.C., and Harmer, M.P.: Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55(18), 6208 (2007).
36. Baram, M., Chatain, D., and Kaplan, W.D.: Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics. Science 332(6026), 206 (2011).
37. Raabe, D., Sandlöbes, S., Millán, J., Ponge, D., Assadi, H., Herbig, M., and Choi, P.P.: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater. 61(16), 6132 (2013).
38. Han, W., Demkowicz, M.J., Mara, N.A., Fu, E., Sinha, S., Rollett, A.D., Wang, Y., Carpenter, J.S., Beyerlein, I.J., and Misra, A.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25(48), 6975 (2013).
39. Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., and Harmer, M.P.: Grain boundary complexions. Acta Mater. 62, 1 (2014).
40. Baletto, F. and Ferrando, R.: Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77(1), 371 (2005).
41. Dou, X., Li, G., and Lei, H.: Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. Nano Lett. 8(5), 1286 (2008).
42. Vajo, J.J.: Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr. Opin. Solid State Mater. Sci. 15(2), 52 (2011).
43. Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).
44. Murdoch, H.A. and Schuh, C.A.: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).
45. Chookajorn, T. and Schuh, C.A.: Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys. Rev. B 89(6), 064102 (2014).
46. Chookajorn, T.: Enhancing stability of powder-route nanocrystalline tungsten-titanium via alloy thermodynamics. In Department of Materials Science and Engineering (Massachusetts Institute of Technology, Cambridge, MA, 2013).
47. Kirchheim, R.: Comment on “Unexplored topics and potentials of grain boundary engineering” by L.S. Shvindlerman and G. Gottstein. Scr. Mater. 55(10), 963 (2006).
48. Gottstein, G. and Shvindlerman, L.S.: Reply to comments on “Unexplored topics and potentials of grain boundary engineering”. Scr. Mater. 55(10), 965 (2006).
49. Turchi, P.E.A., Kaufman, L., and Liu, Z.K.: Modeling of Ni-Cr-Mo based alloys: Part I—phase stability. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 30(1), 70 (2006).
50. Cordero, Z.C. and Schuh, C.A.: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).
51. Park, M. and Schuh, C.A.: Mechanism to accelerate sintering in phase-separating nanostructured alloys. Manuscript presently under review.
52. Joy, D.C., Romig, A.D., and Goldstein, J.: Principles of Analytical Electron Microscopy (Springer, New York, 1986).
53. Lorimer, G.: Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope; a review. Mineral. Mag. 51(359), 49 (1987).
54. Shih, S-J., Lozano-Perez, S., and Cockayne, D.J.H.: Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3 . J. Mater. Res. 25(02), 260 (2010).

Keywords

Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr

  • Tongjai Chookajorn (a1), Mansoo Park (a2) and Christopher A. Schuh (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed