Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T13:49:41.983Z Has data issue: false hasContentIssue false

The ductility and toughness improvement in metallic glass through the dual effects of graphene interface

Published online by Cambridge University Press:  05 January 2017

Reza Rezaei
Affiliation:
Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Semnan 36155-316, Iran
Chuang Deng*
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
Mahmoud Shariati
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Rzzavi Khorasan 91779-48974, Iran
Hossein Tavakoli-Anbaran
Affiliation:
Faculty of Physics, Shahrood University of Technology, Shahrood, Semnan 36155-316, Iran
*
a)Address all correspondence to this author. e-mail: Chuang.Deng@umanitoba.ca
Get access

Abstract

Bulk metallic glasses own unique mechanical properties such as high strength and excellent elastic behavior due to their amorphous atomic structure. Nonetheless, they usually fail catastrophically by shear localization without showing any macroscale plastic deformation under tension and therefore are notoriously brittle. In this study, graphene was proposed as an effective reinforcement to improve the ductility and toughness of metallic glass for possessing a unique combination of strong in-plane strength and weak interbonding with the metal matrix based on molecular dynamics simulations. Both continuous and discontinuous graphene sheets with various configurations and lengths were taken into account. It was found that with proper dispersion of the graphene reinforcements, more than 100% increase in the ductility and more than 150% increase in the toughness can be achieved in the nanocomposites as compared to the monolithic metallic glass of similar size, which was enabled by spreading and delocalizing the plastic shearing deformation in the nanocomposites because of the dual effects of the added graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Greer, A.L.: Metallic glasses…on the threshold. Mater. Today 12, 14 (2009).CrossRefGoogle Scholar
Hufnagel, T.C.: Preface to the viewpoint set on mechanical behavior of metallic glasses. Scr. Mater. 54, 317 (2006).CrossRefGoogle Scholar
Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).Google Scholar
Liu, W. and Zhang, L.: On the nano/micro-mechanics of metallic glass. Crit. Rev. Solid State Mater. Sci. 40, 137 (2015).Google Scholar
Sun, B.A. and Wang, W.H.: The fracture of bulk metallic glasses. Prog. Mater. Sci. 74, 211 (2015).Google Scholar
Gludovatz, B., Naleway, S.E., Ritchie, R.O., and Kruzic, J.J.: Size-dependent fracture toughness of bulk metallic glasses. Acta Mater. 70, 198 (2014).Google Scholar
Hsu, C., Lin, H., and Lee, P.: Characterization of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotubes. Adv. Eng. Mater. 10, 1053 (2008).Google Scholar
Park, E.S. and Kim, D.H.: Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Met. Mater. Int. 11, 19 (2005).CrossRefGoogle Scholar
Brink, T., Peterlechner, M., Rösner, H., Albe, K., and Wilde, G.: Influence of crystalline nanoprecipitates on shear-band propagation in Cu–Zr-based metallic glasses. Phys. Rev. Appl. 5, 054005 (2016).Google Scholar
Greer, A.L. and Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32(8), 611 (2007).Google Scholar
Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).Google Scholar
Inoue, A., Tomioka, H., and Masumoto, T.: Mechanical properties of ductile Fe–Ni–Zr and Fe–Ni–Zr (Nb or Ta) amorphous alloys containing fine crystalline particles. J. Mater. Sci. 18, 153 (1983).Google Scholar
Pauly, S., Das, J., Bednarcik, J., Mattern, N., Kim, K.B., Kim, D.H., and Eckert, J.: Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites. Scr. Mater. 60, 431 (2009).Google Scholar
Inoue, A., Zhang, T., Saida, J., and Matsushita, M.: Enhancement of strength and ductility in Zr-based bulk amorphous alloys by precipitation of quasicrystalline phase. Mater. Trans. 41, 1511 (2000).Google Scholar
Siegrist, M.E. and Löffler, J.F.: Bulk metallic glass–graphite composites. Scr. Mater. 56, 1079 (2007).Google Scholar
Wu, F., Chan, K.C., Jiang, S., Chen, S., and Wang, G.: Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit. Sci. Rep. 4, 5302 (2014).Google Scholar
Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).Google Scholar
Das, J., B.Tang, M., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).Google Scholar
Kim, J.Y., Jang, D., and Greer, J.R.: Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv. Funct. Mater. 21, 4550 (2011).Google Scholar
Kim, J.Y., Gu, X., Wraith, M., Uhl, J.T., Dahmen, K.A., and Greer, J.R.: Suppression of catastrophic failure in metallic glass–polyisoprene nanolaminate containing nanopillars. Adv. Funct. Mater. 22, 1972 (2012).Google Scholar
Guo, W., Jägle, E., Yao, J., Maier, V., Korte-Kerzel, S., Schneider, J.M., and Raabe, D.: Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80, 94106 (2014).Google Scholar
Bian, Z., Pan, M.X., Zhang, Y., and Wang, W.H.: Carbon-nanotube-reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass composites. Appl. Phys. Lett. 81, 4739 (2002).Google Scholar
Zhao, P., Li, S., Gao, G., Bai, B., and Misra, R.D.K.: Mechanical behavior of carbon nanotube-reinforced Mg–Cu–Gd–Ag bulk metallic glasses. Mater. Sci. Eng., A 641, 116 (2015).Google Scholar
Sheng, H.W., Kramer, M.J., Cadien, A., Fujita, T., and Chen, M.W.: Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 134118 (2011).Google Scholar
Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B: Condens. Matter Mater. Phys. 39, 5566 (1989).Google Scholar
Lindsay, L. and Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 205441 (2010).Google Scholar
Sevik, C., Sevincli, H., Cuniberti, G., and Cagın, T.: Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 11, 4971 (2011).Google Scholar
Sevik, C., Kınacı, A., Haskins, J.B., and Çağın, T.: Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 085409 (2011).Google Scholar
Kınacı, A., Haskins, J.B., Sevik, C., and Çağın, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 115410 (2012).Google Scholar
Singh, S. and Patel, B.P.: Nonlinear elastic properties of graphene sheet under finite deformation. Compos. Struct. 119, 412 (2015).Google Scholar
Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng., R 74, 281350 (2013).Google Scholar
Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., and Chen, Y.: Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B 405, 1301 (2010).Google Scholar
Arcidiacono, S., Walther, J.H., Poulikakos, D., Passerone, D., and Koumoutsakos, P.: Solidification of gold nanoparticles in carbon nanotubes. Phys. Rev. Lett. 94, 105502 (2005).Google Scholar
Silvestre, N., Faria, B., and Lopes, J.N.C.: Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics. Compos. Sci. Technol. 90, 16 (2014).CrossRefGoogle Scholar
Song, H.Y. and Zha, X.W.: Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites. Comput. Mater. Sci. 49, 899 (2010).Google Scholar
Song, X., Gan, Z., Liu, S., Yan, H., and Lv, Q.: Computational study of thermocompression bonding of carbon nanotubes to metallic substrates. J. Appl. Phys. 106, 104308 (2009).Google Scholar
Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., and Han, S.M.: Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat. Commun. 4, 2114 (2013).Google Scholar
Choi, B.K., Yoon, G.H., and Lee, S.: Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Composites Part B 91, 119 (2016).Google Scholar
Liu, X.Y., Wang, F.C., Wu, H.A., and Wang, W.Q.: Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface. Appl. Phys. Lett. 104, 231901 (2014).Google Scholar
Rezaei, R., Shariati, M., Tavakoli-Anbaran, H., and Deng, C.: Mechanical characteristics of CNT-reinforced metallic glass nanocomposites by molecular dynamics simulations. Comput. Mater. Sci. 119, 19 (2016).Google Scholar
Filippova, V.P., Kunavin, S.A., and Pugachev, M.S.: Calculation of the parameters of the Lennard Jones potential for pairs of identical atoms based on the properties of solid substances. Inorg. Mater. Appl. Res. 6, 1 (2015).Google Scholar
Zhen, S. and Davies, G.J.: Calculation of the Lennard-Jones n–m potential energy parameters for metals. Phys. Status Solidi 78, 595 (1983).Google Scholar
Kang, J.W., Choi, Y.G., Lee, J.H., Kwon, O.K., and Hwang, H.J.: Molecular dynamics simulations of carbon nanotube oscillators deformed by encapsulated copper nanowires. Mol. Simul. 34, 829 (2008).Google Scholar
Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).Google Scholar
Beer, F.P. and Johanston, E.R.: Mechanics of Materials, 2nd ed. (McGraw-Hill, England, 1992); p. 573.Google Scholar
Mattern, N., Bednarcik, J., Pauly, S., Wang, G., Das, J., and Eckert, J.: Structural evolution of Cu–Zr metallic glasses under tension. Acta Mater. 57, 4133 (2009).CrossRefGoogle Scholar
Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L., and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−x Zr x (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).Google Scholar
Duan, G., Blauwe, K., Lind, M.L., Schramm, J.P., and Johnson, W.L.: Compositional dependence of thermal, elastic, and mechanical properties in Cu–Zr–Ag bulk metallic glasses. Scr. Mater. 58, 159 (2008).Google Scholar
Greer, A.L., Cheng, Y.Q., and Ma, E.: Shear bands in metallic glasses. Mater. Sci. Eng., R 74, 71 (2013).Google Scholar
Yang, B., Morrison, M.L., Liaw, P.K., Buchanan, R.A., Wang, G., Liu, C.T., and Denda, M.: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 (2005).Google Scholar
Bei, H., Xie, S., and George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).Google Scholar
Feng, S., Qi, L., Wang, L., Pan, S., Ma, M., Zhang, X., Li, G., and Liu, R.: Atomic structure of shear bands in Cu64Zr36 metallic glasses studied by molecular dynamics simulations. Acta Mater. 95, 236 (2015).Google Scholar
Takeuchi, S. and Edagawa, K.: Atomistic simulation and modeling of localized shear deformation in metallic glasses. Prog. Mater. Sci. 56, 785 (2011).Google Scholar
Tang, C. and Wong, C.H.: A molecular dynamics simulation study of solid-like and liquid-like networks in Zr46Cu46Al8 metallic glass. J. Non-Cryst. Solids 422, 39 (2015).Google Scholar
Shimizu, F., Ogata, S., and Li, J.: Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48, 2923 (2007).Google Scholar
Li, Q.K. and Li, M.: Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation. Appl. Phys. Lett. 91, 231905 (2007).Google Scholar
Albe, K., Ritter, Y., and Şopu, D.: Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations. Nanostruct. Mater. 67, 94 (2013).Google Scholar
Cao, A.J., Cheng, Y.Q., and Ma, E.: Structural processes that initiate shear localization in metallic glass. Acta Mater. 57, 5146 (2009).Google Scholar
Li, Q-K. and Li, M.: Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of amorphous metals. Intermetallics 14, 1005 (2006).CrossRefGoogle Scholar
Nakatani, K., Nakatani, A., Sugiyama, Y., and Kitagawa, H.: Molecular dynamics study on mechanical properties and fracture in amorphous metal. AIAA J. 38, 695 (2000).Google Scholar
Hussain, F., Imran, M., Rashid, M., Ullah, H., Shakoor, A., Ahmad, E., and Ahmad, S.A.: Molecular dynamics simulation of mechanical characteristics of CuZr bulk metallic glasses using uni-axial tensile loading technique. Phys. Scr. 89, 115701 (2014).Google Scholar
Feng, S., Qi, L., Li, G., and Liu, R.: Molecular dynamics simulation of structural characterization of elastic and inelastic deformation in ZrCu metallic glasses. J. Nanomater. 2014, 16 (2014).Google Scholar
Guo, H., Yan, P.F., Wang, Y.B., Tan, J., Zhang, Z.F., Sui, M.L., and Ma, E.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735 (2007).Google Scholar
Tian, L., Shan, Z.W., and Ma, E.: Ductile necking behavior of nanoscale metallic glasses under uniaxial tension at room temperature. Acta Mater. 61, 4823 (2013).Google Scholar
Gao, Y.F., Wang, L., Bei, H., and Nieh, T.G.: On the shear-band direction in metallic glasses. Acta Mater. 59, 4159 (2011).Google Scholar
Kim, K.T., Cha, S.I., Gemming, T., Eckert, J., and Hong, S.H.: The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small 4, 1936 (2008).Google Scholar
Wang, J., Li, Z., Fan, G., Pan, H., Chenb, Z., and Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594 (2012).Google Scholar
Chen, L.Y., Konishi, H., Fehrenbacher, A., Ma, C., Xu, J.Q., Choi, H., Xu, H.F., Pfefferkorn, F.E., and Li, X.C.: Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67, 29 (2012).Google Scholar
Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H., and Jeon, S.: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724 (2013).Google Scholar
Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., and Kim, K.S.: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156 (2012).Google Scholar