Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:10:22.369Z Has data issue: false hasContentIssue false

Dual effects of co-electrodeposition of CeO2 nanoparticles on the grain growth of nanocrystalline Ni matrix

Published online by Cambridge University Press:  16 May 2017

Liangfu Zheng*
Affiliation:
Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Zhen Yang
Affiliation:
Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Huijuan Zhen*
Affiliation:
Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Xiao Peng*
Affiliation:
Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
*
a) Address all correspondence to these authors. e-mail: lfzheng@alum.imr.ac.cn
b) e-mail: xpeng@imr.ac.cn
Get access

Abstract

Thermal stability up to 400 °C of nanocrystalline (NC) Ni electrodeposits (EDs) with a mean grain size of 28 nm and dispersions of a small amount of CeO2 nanoparticles has been investigated by comparing with two CeO2-free NC Ni counterparts, one with a slightly smaller mean grain size of 18 nm and the other with a slightly larger mean grain size of 34 nm. The results show that the co-deposition of CeO2 particles has dual effects on the thermal stability of the NC Ni EDs, i.e., it promotes the grain growth at the beginning but retards subsequently. It is proposed that the CeO2 co-deposition leads to a decrease in sulfur level and an increase in the plane defects as a result of introduction of incoherent Ni/CeO2 interfaces, which play dominant roles in the grain growth at low temperatures; while the drag effect of CeO2 dispersions becomes dominant at higher temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
Lu, K.: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161 (1996).CrossRefGoogle Scholar
Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
Clark, D., Wood, D., and Erb, U.: Industrial applications of electrodeposited nanocrystals. Nanostruct. Mater. 9, 755 (1997).CrossRefGoogle Scholar
Buchheit, T.E., Michael, J.R., Christenson, T.R., LaVan, D.A., and Leith, S.D.: Microstructural and mechanical properties investigation of electrodeposited and annealed LIGA nickel structures. Metall. Mater. Trans. A 33, 539 (2002).CrossRefGoogle Scholar
Palumbo, G., Gonzalez, F., Brennenstuhl, A.M., Erb, U., Shmayda, W., and Lichtenberger, P.C.: In situ nuclear steam generator repair using electrodeposited nanocrystalline nickel. Nanostruct. Mater. 9, 737 (1997).CrossRefGoogle Scholar
Klement, U., Erb, U., El-Sherik, A.M., and Aust, K.T.: Thermal stability of nanocrystalline Ni. Mater. Sci. Eng., A 203, 177 (1995).CrossRefGoogle Scholar
Wang, N., Wang, Z., Aust, K.T., and Erb, U.: Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing. Acta Mater. 45, 1655 (1997).CrossRefGoogle Scholar
Hibbard, G.D., Erb, U., Aust, K.T., Klement, U., and Palumbo, G.: Thermal stability of nanostructured electrodeposits. Mater. Sci. Forum 386–388, 387 (2002).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).CrossRefGoogle Scholar
Mehta, S.C., Smith, D.A., and Erb, U.: Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt% phosphorus alloy. Mater. Sci. Eng., A 204, 227 (1995).CrossRefGoogle Scholar
Talin, A.A., Marquis, E.A., Goods, S.H., Kelly, J.J., and Miller, M.K.: Thermal stability of Ni–Mn electrodeposits. Acta Mater. 54, 1935 (2006).CrossRefGoogle Scholar
El-Sherik, A.M., Boylan, K., Erb, U., Palumbo, G., and Aust, K.T.: Grain growth behaviour of nanocrystalline nickel. MRS Online Proc. Libr. 238, 727 (1991).CrossRefGoogle Scholar
Knauth, P., Charaï, A., and Gas, P.: Grain growth of pure nickel and of a Ni–Si solid solution studied by differential scanning calorimetry on nanometer-sized crystals. Scr. Metall. Mater. 28, 325 (1993).CrossRefGoogle Scholar
Koch, C.C., Scattergood, R.O., Darling, K.A., and Semones, J.E.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264 (2008).CrossRefGoogle Scholar
Chen, Z., Liu, F., Wang, H.F., Yang, W., Yang, G.C., and Zhou, Y.H.: A thermokinetic description for grain growth in nanocrystalline materials. Acta Mater. 57, 1466 (2009).CrossRefGoogle Scholar
Cziraki, A., Tonkovics, Z., Gerocs, I., Fogarassy, B., Groma, I., Tothkadar, E., Tarnoczi, T., and Bakonyi, I.: Thermal-stability of nanocrystalline nickel electrodeposits—Differential scanning calorimetry transmission electron microscopy and magnetic studies. Mater. Sci. Eng., A 179, 531 (1994).CrossRefGoogle Scholar
Weissmüller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55, 4221 (2007).CrossRefGoogle Scholar
Burke, J.E.: Some factors affecting the rate of grain growth in metals. Trans. AIME 180, 73 (1949).Google Scholar
Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., and Wu, D.T.: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143 (1999).CrossRefGoogle Scholar
Kirchheim, R.: Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002).CrossRefGoogle Scholar
Rohrer, G.S.: Introduction to grains, phases, and interfaces—An interpretation of microstructure. Trans. AIME 175, 1551 (1948) by CS Smith Metall. Mater. Trans. B. 41, 457 (2010).Google Scholar
daSilva, M., Klement, U., and Hibbard, G.D.: Enhanced thermal stability of a cobalt–boron carbide nanocomposite by ion-implantation. Int. J. Mater. Res. 98, 1124 (2007).CrossRefGoogle Scholar
Zhao, J., Peng, X., Wang, Y., and Wang, F.: Plasma nitridation of a novel Ni–10.8 wt% Cr nanocomposite. Acta Mater. 55, 3193 (2007).CrossRefGoogle Scholar
Zhang, H., Peng, X., Zhao, J., and Wang, F.: Prior electrodeposition of nanocrystalline Ni–CeO2 film: Fabricating an oxidation-resistant chromized coating on carbon steels. Electrochem. Solid-State Lett. 10, C12 (2007).CrossRefGoogle Scholar
Peng, X., Yan, J., Zheng, L., and Wang, F.: Oxidation of a novel CeO2-dispersed chromium coating in wet air. Mater. Corros. 62, 514 (2011).CrossRefGoogle Scholar
Xu, C., Peng, X., and Wang, F.: Cyclic oxidation of an ultrafine-grained and CeO2-dispersed δ-Ni2Al3 coating. Corros. Sci. 52, 740 (2010).CrossRefGoogle Scholar
Xu, C., Peng, X., Zheng, L., and Wang, F.: Erosion–corrosion in a laboratory-scale coal-firing FBC of various aluminized coatings prepared by low-temperature pack cementation. Surf. Coat. Technol. 205, 4540 (2011).CrossRefGoogle Scholar
Zheng, L., Peng, X., and Wang, F.: Comparison of the dry and wet oxidation at 900 °C of η-Fe2Al5 and δ-Ni2Al3 coatings. Corros. Sci. 53, 597 (2011).CrossRefGoogle Scholar
Zheng, L., Peng, X., and Wang, F.: Thermal stability up to 800 °C of a Ni–4 wt% Al nanocomposite. J. Mater. Sci. 47, 7759 (2012).CrossRefGoogle Scholar
Zheng, L., Peng, X., and Wang, F.: Effect of pulse period and saccharin additive on microstructure of Ni electrodeposits. Chin. J. Mater. Res. 24, 501 (2010).Google Scholar
Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
Hibbard, G.D., Aust, K.T., and Erb, U.: The effect of starting nanostructure on the thermal stability of electrodeposited nanocrystalline Co. Acta Mater. 54, 2501 (2006).CrossRefGoogle Scholar
Hibbard, G.D.: Microstructural design of nanocrystalline electrodeposits for enhanced thermal stability. Process. Fabr. Adv. Mater. XV, 287 (2006).Google Scholar
Zhao, M., Dong, H., Chen, Z., Ma, Z., Wang, L., Wang, G., Yang, W., and Shao, G.: Study of Ni–S/CeO2 composite material for hydrogen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 41, 20485 (2016).CrossRefGoogle Scholar
Zheng, Z., Li, N., Wang, C-Q., Li, D-Y., Meng, F-Y., Zhu, Y-M., Li, Q., and Wu, G.: Electrochemical synthesis of Ni–S/CeO2 composite electrodes for hydrogen evolution reaction. J. Power Sources 230, 10 (2013).CrossRefGoogle Scholar
Zhang, K., Li, J., Liu, W., Liu, J., and Yan, C.: Electrocatalytic activity and electrochemical stability of Ni–S/CeO2 composite electrode for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrogen Energy 41, 22643 (2016).CrossRefGoogle Scholar
Choi, Y.M., Compson, C., Lin, M.C., and Liu, M.: Ab initio analysis of sulfur tolerance of Ni, Cu, and Ni–Cu alloys for solid oxide fuel cells. J. Alloys Compd. 427, 25 (2007).CrossRefGoogle Scholar
Rodriguez, J.A. and Hrbek, J.: Interaction of sulfur with well-defined metal and oxide Surfaces: Unraveling the mysteries behind catalyst poisoning and desulfurization. Acc. Chem. Res. 32, 719 (1999).CrossRefGoogle Scholar
Chen, H-T., Choi, Y., Liu, M., and Lin, M.C.: A first-principles analysis for sulfur tolerance of CeO2 in solid oxide fuel cells. J. Phys. Chem. C 111, 11117 (2007).CrossRefGoogle Scholar
El-Sherik, A.M. and Erb, U.: Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J. Mater. Sci. 30, 5743 (1995).CrossRefGoogle Scholar
Wen, T-C., Lin, S-M., and Tsai, J-M.: Sulphur content and the hydrogen evolving activity of NiS x deposits using statistical experimental strategies. J. Appl. Electrochem. 24, 233 (1994).CrossRefGoogle Scholar
Brenner, A.: Electrodeposition of Alloys: Principles and Practice (Elsevier, Washington, D.C., 2013).Google Scholar
Shewmon, P.G.: Transformations in Metals (McGraw-Hill, New York, 1969).Google Scholar
Rollett, A., Humphreys, F.J., Rohrer, G.S., and Hatherly, M.: Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2004).Google Scholar
Chen, W. and Gao, W.: Thermal stability and tensile properties of sol-enhanced nanostructured Ni–TiO2 composites. Composites, Part A 42, 1627 (2011).CrossRefGoogle Scholar