Skip to main content Accessibility help
×
Home

Domain structure and electrical properties of highly textured PbZrxTi1−xO3 thin films grown on LaNiO3-electrode-buffered Si by metalorganic chemical vapor deposition

  • C. H. Lin (a1), B. M. Yen (a1), H. C. Kuo (a1), Haydn Chen (a1), T. B. Wu (a2) and G. E. Stillman (a3)...

Extract

Thin films of highly (100) textured fine-grain (lateral grain size ≅0.1 to 0.15 μm) PbZrxTi1−xO3 (PZT) (x = 0 to 0.7) were grown on conductive perovskite LaNiO3-buffered platinized Si substrates by metalorganic chemical vapor deposition. Domain configuration and crystalline orientation were studied using x-ray diffraction and transmission electron microscopy. The predominant domain boundaries of Ti-rich tetragonal-phase PZT and Zr-rich rhombohedral-phase PZT were found to be on the (110) planes and (100) planes, respectively. The equilibrium domain widths were observed and estimated numerically on the basis of transformation strain, grain size, and domain boundary energy. The peak value of the dielectric constant was 790 near the morphotropic boundary. Hysteresis behavior of these PZT thin films was demonstrated. A decrease in coercive field with the increment of Zr content was found; this variation was attributed to domain density and the multiplicity of polarization axes. Furthermore, the low leakage current (J ≤ 5 × 10−7 A/cm2 at V = 4 V) was observed for all samples, and the involvement of several possible conduction mechanisms was suggested.

Copyright

References

Hide All
1.Scott, J.F. and de Araujo, C.A.P., Science 246, 1400 (1989).
2.Larsen, P.K., Cuppen, R., and Spierings, G.A., Ferroelectrics 128, 265 (1992).
3.Robbins, W.P., Integr. Ferroelectr. 11, 179 (1995).
4.Moazzami, R., Semicond. Sci. Technol. 10, 375 (1995).
5.Itoh, H., Kashihara, K., Okudaira, T., Tsukamoto, K., and Akasaka, Y., IEEE IEDM Tech. Dig. 831 (1991).
6.Lee, J.J., Thio, C.L., and Desu, S.B., J. Appl. Phys. 78, 5073 (1995).
7.Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., Schwartz, R.W., Clews, P.J., and McIntyre, D.C., J. Appl. Phys. 77, 6695 (1995).
8.Scott, J.F., Araujo, C.A., Melnick, B.M., McMillan, L.D., and Zuleeg, R., J. Appl. Phys. 70, 382 (1991).
9.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).
10.Eom, C.B., Van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., and Fleming, R.M., Appl. Phys. Lett. 63, 2570 (1993).
11.Foster, C.M., Bai, G.R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L.A., Carr, E., and Amano, J., J. Appl. Phys. 81, 2349 (1997).
12.Al-Shareef, H.N., Tuttle, B.A., Warren, W.L., Headley, T.J., Dimos, D., Voigt, J.A., and Nasby, R.D., J. Appl. Phys. 79, 1013 (1996).
13.Yang, C.C., Chen, M.S., Hong, T.J., Wu, C.M., Wu, J.M., and Wu, T.B., Appl. Phys. Lett. 66, 2643 (1995).
14.Tseng, T.T., Yang, R.P., Liu, K.S., and Lin, I.N., Appl. Phys. Lett. 70, 46 (1997).
15.Chen, M.S., Wu, T.B., and Wu, J.M., Appl. Phys. Lett. 68, 1430 (1996).
16.Yu, T., Chen, Y.F., Liu, Z.G., Xiong, S.B., Sun, L., Chen, X.Y., Shi, L.J., and Ming, N.B., Appl. Phys. Lett. 69, 2092 (1996).
17.Tuttle, B.A., Headley, T.J., Al-Shareef, H.N., Voigt, J.A., Rodriguez, M., Michael, J., and Warren, W.L., J. Mater. Res. 11, 2309 (1996).
18.Klee, M., Eusemann, R., Waser, R., Brand, W., and van Hal, H., J. Appl. Phys. 72, 1566 (1992).
19.Dietz, G.W., Schumacher, M., Waser, R., Streiffer, S.K., Basceri, C., and Kingon, A.I., J. Appl. Phys. 82, 2359 (1997).
20.Sudhama, C., Campbell, A.C., Maniar, P.D., Jones, R.E., Moazzami, R., Mogab, C.J., and Lee, J.C., J. Appl. Phys. 75, 1014 (1994).
21.Al-Shareef, H.N., Kingon, A.I., Chen, X., Bellur, K.R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).
22.Arlt, G., Hennings, D., and de With, G., J. Appl. Phys. 58, 1619 (1985).
23.Frey, M.H., Xu, Z., Han, P., and Payne, D.A., Ferroelectrics 207, 337 (1998).
24.Streiffer, S.K., Parker, C.B., Romanov, A.E., Lefevre, M.J., Zhao, L., Speck, J.S., Foster, C.M., and Bai, G.R., J. Appl. Phys. 83, 2742 (1998).
25.Demczyk, B.G., Rai, R.S., and Thomas, G., J. Am. Ceram. Soc. 73, 615 (1990).
26.Lee, E.G., Wouters, D., Willems, G., and Maes, H., Appl. Phys. Lett. 70, 2404 (1997).
27.Tuttle, B.A., Voigt, J.A., Garino, T., Goodnow, D.C., Schwartz, R.W., Lamppa, D.L., Headley, T.J., and Eatough, M.O., IEEE Proceedings of the Eighth International Symposium on Applications of Ferroelectrics, 1992, p. 344.
28.Yoo, I.K. and Desu, S.B., IEEE Proceedings of the Eighth International Symposium on Applications of Ferroelectrics, 1992, p. 225.

Related content

Powered by UNSILO

Domain structure and electrical properties of highly textured PbZrxTi1−xO3 thin films grown on LaNiO3-electrode-buffered Si by metalorganic chemical vapor deposition

  • C. H. Lin (a1), B. M. Yen (a1), H. C. Kuo (a1), Haydn Chen (a1), T. B. Wu (a2) and G. E. Stillman (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.