Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T13:49:50.681Z Has data issue: false hasContentIssue false

Domain and lattice contributions to dielectric and piezoelectric properties of Pb(Zrx, Ti1−x)O3 thin films as a function of composition

Published online by Cambridge University Press:  31 January 2011

S. Hiboux
Affiliation:
Laboratoire de Céramique, Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
P. Muralt
Affiliation:
Laboratoire de Céramique, Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
T. Maeder
Affiliation:
Laboratoire de Céramique, Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
Get access

Abstract

In situ reactively sputter deposited, 300-nm-thick Pb(Zrx, Ti1−x)O3 thin films were investigated as a function of composition, texture, and different electrodes (Pt,RuO2).X-ray diffraction analysis, ferroelectric, dielectric, and piezoelectric measurements were carried out. While for dielectric properties bulklike contributions from lattice as well as from domains are observed, domain wall contributions to piezoelectric properties are very much reduced in the morphotropic phase boundary (MPB) region. Permittivity and d33 do not peak at the same composition; the MPB region is broadened up and generally shifted to the tetragonal side.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Araujo, C.A., MacMillan, L.D., Melnick, B.M., Cuchiaro, J.D., and Scott, J.F., Ferroelectrics 104, 241 (1990).CrossRefGoogle Scholar
2.Jones, R.E., Zürcher, P., Chou, P., Taylor, D.J., Lii, Y.T., Jiang, B., Maniar, P.D., and Gillespie, S.J., Microelectron. Eng. 29, 3 (1995).CrossRefGoogle Scholar
3.Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K.G., Setter, N., and Luthier, R., Sens. Actuators A 48, 157 (1995).CrossRefGoogle Scholar
4.Bruchhaus, R., Ferroelectrics 133, 73 (1992).CrossRefGoogle Scholar
5.Kohli, M., Wüthrich, C., Brooks, K.G., Willing, B., Forster, M., Muralt, P., Setter, N., and Ryser, P., Sens. Actuators A 60, 147 (1997).CrossRefGoogle Scholar
6.Foster, C.M., Bai, G-R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L.A., Carr, E., and Amano, J., J. Appl. Phys. 81, 2349 (1997).CrossRefGoogle Scholar
7.Arlt, G., Hennings, D., and de Witt, G., J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
8.Arlt, G., Ferroelectrics 91, 3 (1989).CrossRefGoogle Scholar
9.Dubois, M-A., Muralt, P., Taylor, D.V., and Hiboux, S., Integr. Ferroelectr. 22, 535 (1998).CrossRefGoogle Scholar
10.Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971).Google Scholar
11.Maeder, T., Muralt, P., Kohli, M., Kholkin, A., and Setter, N., Br. Ceram. Proc. 54, 206 (1995).Google Scholar
12.Maeder, T. and Muralt, P., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), pp. 361366.Google Scholar
13.Bruchhaus, R., Huber, H., Peitzer, D., and Wersing, W., Integr. Ferroelectr. 2, 157 (1992).CrossRefGoogle Scholar
14.Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H.J., Patthey, L., and Bullock, E.L.. J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
15.Hector, H., Floquet, N., Niepce, J.C., Gaucher, P., and Ganne, J.P., Microelectron. Eng. 29, 285 (1995).CrossRefGoogle Scholar
16.Warren, B.E. and Auerbach, B.I., J. Appl. Phys. 21, 595 (1950).CrossRefGoogle Scholar
17.Kholkin, A., Colla, E., Brooks, K., Muralt, P., Kohli, M., Maeder, T., Taylor, D., and Setter, N., Microelectron. Eng. 29, 261 (1995).CrossRefGoogle Scholar
18.Kholkin, A.L., Wüthrich, Ch., Taylor, D.V., and Setter, N., Rev. Sci. Instrum. 67, 1935 (1996).CrossRefGoogle Scholar
19.Berlincourt, D.A., Cmolik, C., and Jaffe, H., Proceedings of the IRE (Institute of Radio Engineers, New York, 1960), Vol. 48, pp. 220229.Google Scholar
20.Lefki, K. and Dormans, G.J.M, J. Appl. Phys. 76, 1764 (1994).CrossRefGoogle Scholar
21.Zhang, X.L., Chen, Z.X., Cross, L.E., and Schulze, W.A., J. Mater. Sci. 18, 968 (1983).CrossRefGoogle Scholar
22.Zhuang, Z.Q., Haun, M.J., Jang, S-J., and Cross, L.E., IEEE Trans. UFFC 36, 413 (1989).CrossRefGoogle Scholar
23.Trolier-McKinstry, S., Aungkavattana, P., Chu, F., Lacey, J., Maria, J-P., Shepard, J.F. Jr, Su, T., and Xu, F., in Ferroelectric Thin Films VI, edited by Treece, R.E., Jones, R.E., Forster, C.M., Desu, S.B., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 493, Pittsburgh, PA, 1998), pp. 5968.Google Scholar
24.Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G., and Evans, J.T., Appl. Phys. Lett. 66, 484 (1995).CrossRefGoogle Scholar
25.Takayama, R. and Tomita, Y., J. Appl. Phys. 65, 1666 (1989).CrossRefGoogle Scholar
26.Lee, E.G., Wouters, D.J., Willems, G., and Maes, H.E., Appl. Phys. Lett. 70, 2404 (1997).CrossRefGoogle Scholar
27.Lee, J., Choi, C.H., Park, B.H., Noh, T.W., and Lee, J.K., Appl. Phys. Lett. 72, 3380 (1998).CrossRefGoogle Scholar
28.Carl, K. and Härdtl, K.H., Ferroelectrics 17, 473 (1978).CrossRefGoogle Scholar
29.Prokopalo, O.I., Sov. Phys. Solid State 21, 1768 (1980).Google Scholar
30.Haun, M.J., Furmann, E., Jang, S.J., and Cross, L.E., Ferroelectrics 99, 13 (1989).CrossRefGoogle Scholar
31.Eremkin, V.V., Smotrakov, V.G., and Fesenko, E.G., Ferroelectrics 110, 137 (1990).Google Scholar