Skip to main content Accessibility help

Dislocations as quantum wires: Buffer leakage in AlGaN/GaN heterostructures

  • C. Lewis Reynolds (a1), Judith G. Reynolds (a2), Antonio Crespo (a3), James K. Gillespie (a3), Kelson D. Chabak (a3) and Robert F. Davis (a4)...


Buffer leakage in aluminum gallium nitride/gallium nitride (AlGaN/GaN) heterostructure transistors is recognized as an issue that has deleterious consequences on device performance for high-power, high-frequency transistors and has been related to the presence of uncharged threading screw dislocations. In this study, we demonstrate that measurements of buffer leakage in AlGaN/GaN heterostructures grown on bulk gallium nitride (GaN) substrates are consistent with a mechanism based on the concept of dislocations acting as quantum wires in series with unintentional silicon (Si) impurity incorporation at the bulk GaN substrate/GaN buffer interface. The number of electronic channels N deduced from the leakage data using Landauer’s formula for the quantum resistance of N electronic channels is consistent with the number of dislocations along the ohmic contact pads determined from panchromatic cathodoluminescence and x-ray diffraction measurements of the dislocation density. This mechanism is consistent with Shockley’s suggestion that dislocations can act as one-dimensional conductors due to the presence of edge states along the dislocation core.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Storm, D.F., Katzer, D.S., Binari, S.C., Shanabrook, B.V., Zhou, L., and Smith, D.J.: Effect of Al/N ratio during nucleation layer growth on Hall mobility and buffer leakage of molecular-beam epitaxy grown AlGaN/GaN heterostructures. Appl. Phys. Lett. 85, 3786 (2004).
2.Poblenz, C., Waltereit, P., Rajan, S., Mishra, U.K., Speck, J.S., Chin, P., Smorchkova, I., and Heying, B.: Effect of AlN nucleation layer growth conditions on buffer leakage in AlGaN/GaN high electron mobility transistors grown by molecular beam epitaxy (MBE). J. Vac. Sci. Technol., B 23, 1562 (2005).
3.Zhou, L., Smith, D.J., Storm, D.F., Katzer, D.S., Binari, S.C., and Shanabrook, B.V.: Effect of Al/N flux ratio during nucleation layer growth on the microstructure of GaN films grown by molecular-beam epitaxy. Appl. Phys. Lett. 88, 011916 (2006).
4.Cao, Y., Zimmermann, T., Xing, H., and Jena, D.: Polarization-engineered removal of buffer leakage for GaN transistors. Appl. Phys. Lett. 96, 042102 (2010).
5.Saito, W., Noda, T., Kuraguchi, M., Takada, Y., Tsuda, K., Saito, Y., Omura, I., and Yamaguchi, M.: Effect of buffer layer structure on drain leakage current and current collapse phenomena in high-voltage GaN-HEMTs. IEEE Trans. Electron. Dev. 56, 1371 (2009).
6.Shockley, W.: Dislocations and edge states in the diamond crystal structure. Phys. Rev. 91, 228 (1953).
7.Shockley, W.: Do dislocations hold technological promise? Solid State Technol. 26, 75 (1983).
8.Wang, A.S.: Analysis of shorts using the channel characteristics of field-effect transistors, in Solid State Electronics Laboratory Reports #SU-SSEL-76-018 (Stanford Electronics Laboratories, Stanford University, Stanford, CA, 1976).
9.Kioseoglou, J., Kalesaki, E., Belabbas, I., Chen, J., Nouet, G., Kirmse, H., Neumann, W., Komninou, P.H., and Karakostas, T.H.: Effect of doping on screw threading dislocations in AlN and their role as conductive nanowires, in Paper PB1.31, 9th International Conference on Nitride Semiconductors, Glasgow, 2011.
10.Ikuhara, Y.: Nanowire design by dislocation technology. Prog. Mater. Sci. 54, 770 (2009).
11.Grenko, J.A., Ebert, C.W., Reynolds, C.L. Jr., Johnson, M.A.L., Hanser, A.D., Preble, E.A., Paskova, T., and Evans, K.R.: Modulation of mobility in homoepitaxially grown AlGaN/GaN heterostructures. Phys. Status Solidi C 6, S1037 (2009).
12.Grenko, J.A., Ebert, C.W., Reynolds, C.L. Jr., Duscher, G.J., Barlage, D.W., Johnson, M.A.L., Preble, E.A., Paskova, T., and Evans, K.R.: Optimization of homoepitaxially grown AlGaN/GaN heterostructures. Phys. Status Solidi A 207, 2292 (2010).
13.Zhirnov, V.: Fundamental Scaling Limits. Lecture (North Carolina State University, Raleigh, NC, 2012).
14.Hanson, G.W.: Fundamentals of Nanoelectronics (Pearson Prentice Hall, Upper Saddle River, NJ, 2008), pp 332335.
15.Lee, S.R., West, A.M., Allerman, A.A., Waldrip, K.E., Follstaedt, D.M., Provencio, P.P., Koleske, D.D., and Abernathy, C.R.: Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN interlayers. Appl. Phys. Lett. 86, 241904 (2005).
16.Grenko, J.A., Reynolds, C.L. Jr., Barlage, D.W., Johnson, M.A.L., Lappi, S.E., Ebert, C.W., Preble, E.A., Paskova, T., and Evans, K.R.: Physical properties of AlGaN/GaN heterostructures grown on vicinal substrates. J. Electron. Mater. 39, 504 (2010).
17.Xin, Y., Pennycook, S.J., Browning, N.D., Nellist, P.D., Sivananthan, S., Omnes, F., Beaumont, B., Faurie, J.P., and Gibart, P.: Direct observation of the core structure in threading dislocations in GaN. Appl. Phys. Lett. 72, 2680 (1998).
18.Jones, R., Elsner, J., Haugh, M., Gutierrez, R., Frauenheim, T., Heggie, M.I., Oberg, S., and Briddon, P.R.: Interaction of oxygen with threading dislocations in GaN. Phys. Status. Solidi A 171, 167(1999).
19.Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I.I., and Batzill, M.: An extended defect in graphene acting as a metallic wire. Nat. Nanotechnol. 5, 326 (2010).
20.Hsu, J.W.P., Manfra, M.J., Lang, D.V., Richter, S., Chu, S.N.G., Sargent, A.M., Kleiman, R.N., and Pfeiffer, L.N.: Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl. Phys. Lett. 78, 1685 (2001).
21.Fujiwara, H., Naruoka, H., Konishi, M., Hamada, K., Katsuno, T., Ishikawa, T., Watanabe, Y., and Endo, T.: Relationship between threading dislocation and leakage current in 4H-SiC diodes. Appl. Phys. Lett. 100, 242102 (2012).
22.Simpkins, B.S., Yu, E.T., Waltereit, P., and Speck, J.S.: Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride. J. Appl. Phys. 94, 1448 (2003).


Dislocations as quantum wires: Buffer leakage in AlGaN/GaN heterostructures

  • C. Lewis Reynolds (a1), Judith G. Reynolds (a2), Antonio Crespo (a3), James K. Gillespie (a3), Kelson D. Chabak (a3) and Robert F. Davis (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed