Skip to main content Accessibility help

Direct current-voltage failure in lead magnesium niobate-based multilayer ceramic capacitors

  • Jiang Li Cao (a1), Long Tu Li (a1), Ning Xin Zhang (a1) and Zhi Lun Gui (a1)


Resistance measurement, P–E hysteresis measurement, and transmission electron microscope and energy dispersive analysis of x-rays (TEM-EDAX) analysis were used to study the resistance failure of lead magnesium niobate-based multilayer ceramic capacitors (MLCC) under dc voltage. It was found that the failure rate of MLCC with 1/9 Pd/Ag internal electrodes was 10 times that of MLCC with 3/7 Pd/Ag electrodes after the temperature–humidity–bias test (THB). Voltage shifts of hysteresis loops showed that an internal bias field between electrodes of MLCC was formed after THB test. Ag diffusion from electrodes into the ceramics during cofiring was examined through TEM-EDAX analysis. It was also found that the degraded specimens could be partially restored after storing under natural condition. On the basis of these results, the failure mechanism was established that oxygen vacancies induced by Ag diffusion accumulated under the external bias field, which increased the concentration of electronic defects, thereby resulting in the resistance failure of MLCC.


Corresponding author

a)Address all correspondence to this


Hide All
1Swartz, S.L. and Shrout, T.R., Mater. Res. Bull. 17, 1245 (1982).
2Swartz, S.L., Shrout, T.R., Schulze, W.A., and Cross, L.E., J. Am. Ceram. Soc. 67, 311 (1984).
3Voss, D.J., Swartz, S.L., and Shrout, T.R., Ferroelectrics 50, 203 (1983).
4Ling, H.C. and Jackson, A.M., IEEE Trans. Compon. Hybrids, Manuf. Technol., Part A 12(1), 130 (1989).
5Kanai, H., Furukawa, O., Nakamura, S., and Yamashita, Y., J. Am. Ceram. Soc. 76(2), 459 (1993).
6Kanai, H., Furukawa, O., Nakamura, S., and Yamashita, Y., J. Am. Ceram. Soc. 78, 1173–78 (1995).
7Yeung, F. and Chan, Y.C., Proc.–Electron. Compon. Technol. Conf. 44, 847 (1994).
8Caballero, A.C., Nieto, E., Duran, P., Mouve, C., Kosec, M., Samardzija, Z., and Drazic, G., J. Mater. Sci. 32, 3257 (1997).
9Chen, C.Y. and Tuan, W.H., J. Am. Ceram. Soc. 83, 1693 (2000).
10Cho, S.Y., Youn, H.J., Kim, D.W., Kim, T.G., and Hong, D.S., J. Am. Ceram. Soc. 81, 3038 (1998).
11Ling, H.C., J. Am. Ceram. Soc. 72, 770 (1989).
12Hwang, H.J., Yasuoka, M., Sando, M., and Toriyama, M., J. Am. Ceram. Soc. 82, 2417 (1999).
13Wang, S.F. and Huebner, W., J. Am. Ceram. Soc. 76, 474 (1993).
14Zuo, R.Z., Li, L.T., Chan, R.Z., and Gui, Z.L., J. Mater. Sci. 35, 5433 (2000).
15Sato, Y., Kanai, H., and Yamashita, Y., J. Am. Ceram. Soc. 79, 261 (1996).
16Maher, G.H., J. Am. Ceram. Soc. 66, 408 (1983).
17Gui, Z.L., Wang, Y., and Li, L.T., Proc. IEEE Int. Symp. Appl. Ferroelectr. 10, 409 (1996).
18Chen, C.J., Wu, E.T., Xu, Y.H., Chen, K.C., and Machenzie, J.D., Ferroelectrics 112, 321 (1990).
19Zheng, L.R., Lin, C.L., and Xu, W.P., J. Appl. Phys. 79, 8634 (1996).
20Sun, S., Wang, Y.M., Fuiere, P.A., and Tuttle, B.A., Integr. Ferroelectr. 23, 25 (1999).
21Kanaya, H., Iwamoto, T., Takahagi, Y., Kunishima, I., and Tanaka, S., Integr. Ferroelectr. 23, 235 (1999).
22Shannon, R.D. and Prewitt, C.T., Acta Crystallogr. B 25, 925 (1969).
23Waser, R., Baiatu, T. and Harotl, K.H., Mater. Sci. Eng. A 109, 171 (1989).
24Smyth, D.M., Harmer, M.P., and Peng, P., J. Am. Ceram. Soc. 72, 2276 (1989).
25Zhang, Q.M., Zhao, J., and Cross, L.E., J. Appl. Phys. 79, 3181 (1996).
26Neumann, H. and Arlt, G., Ferroelectrics 69, 179 (1986).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed