Skip to main content Accessibility help

Diffusion and solubility of holmium ions in barium titanate ceramics

  • Junichi Itoh (a1), Hajime Haneda (a2), Shunichi Hishita (a3), Isao Sakaguchi (a3), Naoki Ohashi (a3), Dae-Chul Park (a3) and Isamu Yashima (a4)...


Ho ion solubility and diffusivity were evaluated in barium titanate ceramics in which Ho ions were implanted with an accelerating voltage of 500 keV. The depth profile of the ions was composed of three regions in the post-annealed sample: the first was the precipitation region, the second was a region created by lattice diffusion of Ho ions, and the third was a region created by grain-boundary diffusion. The Ho lattice diffusion characteristics were similar to those of Ni ion diffusion in barium titanate ceramics, and we concluded that the diffusion mechanism was the same as that responsible for Ni ions. The Ho ions diffused through the B-site (Ti-site) and were then exchanged with A-site ions. This mechanism suggests that a small number of Ho ions dissolved in the B-site. Preferential grain-boundary diffusion was also observed. The grain-boundary diffusion coefficients were four to five orders of magnitude larger than the volume diffusion coefficients. The solubility of Ho ions was estimated to be a few thousand parts per million in barium titanate ceramics.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Sakabe, Y. and Murata, M.: Ceramic capacitor. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 58, 800 1990 (In Japanese)
2Kishi, H., Mizuno, Y. and Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).
3Saito, H., Chazono, H., Kishi, H. and Yamaoka, N.: X7R multilayer ceramic capacitors with nickel electrodes. Jpn. J. Appl. Phys. 30, 2307 (1991).
4Itoh, J., Yashima, I., Ohashi, N., Sakaguchi, I., Haneda, H. and Tanaka, J.: Ni ion diffusion in barium titanate perovskite. J. Ceram. Soc. Jpn. 109, 955 (2001).
5Herbert, J.M.: High-permittivity ceramics sintered in hydrogen. Trans. Br. Ceram. Soc. 62, 645 (1963).
6Burn, I. and Maher, G.J.: High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres. J. Mater. Sci. 10, 633 (1975).
7Sakabe, Y., Minai, K. and Wakino, K.: High-dielectric constant for base metal monolothic capacitor. Jpn. J. Appl. Phys. Suppl. 20, 147 (1981).
8Sumita, S., Ikeda, M., Nakano, Y., Nishiyama, K. and Nomura, T.: Degradation of multilayer ceramic capacitors with nickel electrodes. J. Am. Ceram. Soc. 74, 2739 (1991).
9Shizuno, H., Kusumi, S., Saito, H. and Kishi, H.: Properties of Y5V multilayer ceramic capacitors with nickel electrodes. Jpn. J. Appl. Phys. 32, 4380 (1993).
10Guerrero, E., Potzl, H., Stingeder, G., Grasserbauer, M., Piplitz, K. and Chu, W.K.: Annealing of high-dose Sb-implanted single-crystal silicon. J. Electrochem. Soc. 132, 3048 (1985).
11Komatsu, M., Ohashi, N., Sakaguchi, I., Hishita, S. and Haneda, H.: Ga, N solubility limit in co-implanted ZnO measured by secondary ion mass spectrometry. Appl. Surf. Sci. 189, 349 (2002).
12Kishi, H., Okino, Y., Honda, M., Iguchi, Y., Imaeda, M., Takahashi, Y., Ohsato, H. and Okuda, T.: The effect of MgO and rare-earth oxide on formation behavior of core-shell structure in BaTiO3. Jpn. J. Appl. Phys. 36, 5954 (1997).
13Itoh, J., Park, D.C., Ohashi, N., Sakaguchi, I., Yashima, I., Haneda, H. and Tanaka, J.: Oxygen defects related to electrical properties of La-doped BaTiO3. Jpn. J. Appl. Phys. 41, 3798 (2002).
14Hishita, S., Haneda, H., Kim, S.S. and Moon, J.H.: Recrystallization of ion-beam amorphized BSCC thin films. Nucl. Instrum. Meth. B 206, 171 (2003).
15Haneda, H., Sakaguchi, I., Watanabe, A., Ishigaki, T. and Tanaka, J.: Oxygen diffusion in single- and poly-crystalline zinc oxides. J. Electroceram. 4, 41 (1999).
16 JCPDS Card No. 5-0626. International Center for Diffraction Data: Newton Square, PA.
17Toujou, F., Tomita, M., Takano, A., Okamoto, Y., Hayashi, S., Yamamoto, A., and Homma, Y.: SIMS round-robin study of depth profiling of boron implantation in silicon[II]-Problem of quantification in high concentration B profiles, in SIMS XII, edited by Benninghoven, A., Bertrand, P., Migeon, H.N., and Werner, H.W. (Elsevier, Amsterdam, The Netherlands, 2000), pp. 101104.
18Barcz, A., Zielinski, M., Nossazewska, E. and Lindstorem, G.: Extremely deep SIMS profiling: Oxygen in FZ silicon. Appl. Surf. Sci. 203, 396 (2003).
19The stopping and range of ions in solids. Ziegler, J.F., Biersack, J.P., and Littmark, U., (Pergamon Press, Inc., New York, 1985) p. 109.
20Hofmann, S.: Atomic mixing, surface-roughness and information depth in high-resolution AES depth profiling of a GaAs/AlAs superlattice structure. Surf. Interf. Anal. 21, 673 (1994).
21Mayer, J.W. Application to semiconductor technology, in Channeling, edited by Morgan, D.V. (John Wiley & Sons, London, U.K., 1973), pp. 453471
22Namba, S., Masuda, K., Gamo, K. and Doi, A. Enhanced diffusion in ion implanted silicon, in Ion Implantation, edited by Eisen, F.H. and Chadderton, L.T. (Gordon and Breach Science Publishers, London, U.K., 1971), pp. 231236
23Linnarsson, M.K., Zimmermann, U., Wong-Leung, J., Shöner, A., Janson, M.S., Jagadish, C. and Svensson, B.G.: Solubility limits of dopants in 4H-SiC. Appl. Surf. Sci. 203, 427 (2003).
24Kingery, W.D., Bowen, H.K. and Uhlmann, D.R. Microstructure of ceramics, in Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, NY, 1976), pp. 516523
25Dean, J.A. Inorganic Chemistry, in Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill, New York, NY, 1999), pp. 3.133.60
26Lopato, L.M., Shechenko, A.V., Kushevskii, A.E. and Tresvyatskii, S.G.: Inorg. Mater. (USSR, English Transl.) 10, 1276 (1974).
27Crank, J.: The Mathematics of Diffusion, (Oxford Academic Press, London, U.K., 1955), p. 30
28Claire, A.D. Le: The analysis of grain boundary diffusion measurements. Brit. J. Appl. Phys. 14, 351 (1963).
29Chung, Y-C. and Wuensch, B.J.: An improved method, based on Whipple’s exact solution, for obtaining accurate grain-boundary diffusion coefficients from shallow solute concentration gradients. J. Appl. Phys. 79, 8323 (1996).
30Shannon, R.D.: Crystal physics, diffraction, theoretical and general crystallography. Acta Crystallogr. A 32, 751 (1976).
31Tsur, Y., Hitomi, A., Scrymgeour, I. and Randall, C.A.: Site occupancy of rare-earth cations in BaTiO3. Jpn. J. Appl. Phys. 40, 255 (2001).
32Kirianov, A., Hagiwara, T., Kishi, H. and Ohsato, H.: Effect of Ho/Mg ratio on formation of core-shell structure in BaTiO3 and on dielectric properties of BaTiO3 ceramics. Jpn. J. Appl. Phys. 41, 6934 (2002).
33Atkinson, A. and Taylor, R.I.: The diffusion of Ni-63 along grain-boundaries in nickel-oxide. Philos. Mag. A 43, 979 (1981).
34Itoh, J., Park, D.C., Ohashi, N., Sakaguchi, I., Yashima, I., Haneda, H. and Tanaka, J.: Oxygen diffusion and defect chemistry in rare-earth-doped BaTiO3. J. Ceram. Soc. Jpn. 110, 495 (2002).
35Narayan, J. and Holland, O.W.: Formation of metastable supersaturated solid solutions in ion implanted silicon during solid phase crystallization. Appl. Phys. Lett. 41, 239 (1982).


Diffusion and solubility of holmium ions in barium titanate ceramics

  • Junichi Itoh (a1), Hajime Haneda (a2), Shunichi Hishita (a3), Isao Sakaguchi (a3), Naoki Ohashi (a3), Dae-Chul Park (a3) and Isamu Yashima (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed