Skip to main content Accessibility help
×
Home

Diamond synthesis by high-velocity thermal spray: The laboratory analogue of a meteorite impact

  • R. Goswami (a1), H. Herman (a1), S. Sampath (a1) and J. B. Parise (a2)

Extract

Nanocrystalline-diamond particles were produced in the form of a coating by depositing Ni-clad graphite powder in a high-velocity thermal spray experiment. Particles were accelerated to impact and formed a thick film (>20 μm) on a steel substrate, with the high-velocity impact generating a shock wave, which propagates through the particle and the underlying deposits. Transmission electron microscopy revealed that this deposit contains cubic diamond nanocrystals having a size range of 5 to 10 nm in graphite. In addition to diamond, it was observed that a portion of the deposit contains “closed-curved graphite.”

Copyright

References

Hide All
1.Wilks, J. and Wilks, E., Properties and Application of Diamond (Butterworth-Heineman, Oxford, United Kingdom, 1991).
2.The Properties of Natural and Synthetic Diamond, edited by Field, J.E. (Academic Press, London, 1992).
3.Goswami, R., Parise, J.B., Sampath, S., and Herman, H., J. Mater. Res. 14, 3489 (1999).
4.Encyclopedia of Materials Science and Engineering, edited by Bever, M.B. (Pergamon Press, Oxford, United Kingdom, 1986), Vol. 2, pp. 11391142.
5.Herman, H., Sci. Am. 256, 112 (1988).
6.Sobolev, V.V. and Guilemany, J.M., Int. Mater. Rev. 41, 13 (1996).
7.Prystay, M., Gougeon, P., and Moreau, C., Proc. 9th National Thermal Spray Conf., Cincinnati, OH (ASM, Materials Park, OH, 1996), pp. 517523.
8.Nellis, W.J., Scripta Met. 22, 121 (1988).
9.Houben, J.M., in Second National Conference on Thermal Spray, Long Beach, CA, edited by Longo, F.N. (ASM, Materials Park, OH, 1985), p. 1.
10.Zukas, J.A., Nicholas, T., Swift, H.F., Greszczuk, L.B., and Curran, D.R., Impact Dynamics (John Wiley and Sons, New York, 1982).
11.Shaner, J.W., Brown, J.M., Swenson, C.A., and Mcqueen, R.G., J. Phys. 45, C8, 235 (1984).
12.Scandolo, S., Bernasconi, M., Chiarotti, G.L., Focher, P., and Tosatti, E., Phy. Rev. Lett. 74, 4015 (1995).
13.Tateyama, Y., Ogitsu, T., Kusakabe, K., and Tsuneyuki, S., Phys. Rev. B 54, 14994 (1996).
14.DeCarli, P.S. and Jamieson, J.C., Science 133, 1821 (1961).
15.Hanfland, M., Beister, H., and Syassen, K., Phys. Rev. B 39, 12598 (1989).
16.Ustami, W., and Yagi, T., Science 252, 1542 (1991).
17.Erskine, D.J. and Nellis, W.J., Nature 349, 317 (1991).
18.Erskine, D.J. and Nellis, W.J., J. Appl. Phys. 71, 4882 (1992).
19.Iijima, S., Nature 354, 56 (1991).
20.Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).
21.Lee, Y.H., Kim, S.G., and Tomanek, D., Phys. Rev. Lett. 78, 2393 (1997).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed