Skip to main content Accessibility help

Diamond growth on thin Ti wafers via chemical vapor deposition

  • Qijin Chen (a1) and Zhangda Lin (a1)


Diamond film was synthesized on thin Ti wafers (as thin as 40 μm) via hot filament chemical vapor deposition (HFCVD). The hydrogen embrittlement of the titanium substrate and the formation of a thick TiC interlayer were suppressed. A very low pressure (133 Pa) was employed to achieve high-density rapid nucleation and thus to suppress the formation of TiC. Oxygen was added to source gases to lower the growth temperature and therefore to slow down the hydrogenation of the thin Ti substrate. The role of the very low pressure during nucleation is discussed, providing insight into the nucleation mechanism of diamond on a titanium substrate. The as-grown diamond films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and x-ray analysis.


Corresponding author

a)Present address: Department of Physics, The University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637.


Hide All
1Spitsyn, B.V., Bouilov, L.C., and Deryaguin, B.V., J. Cryst. Growth 52, 219 (1981).
2Matsumoto, M., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 71, L183 (1982).
3Kamo, M., Sato, Y., Matosumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).
4Ravi, K.V. and Joshi, A., Appl. Phys. Lett. 58, 246 (1991).
5Angus, J.C., Wang, Y., and Sunkara, M., Annu. Rev. Mater. Sci. 21, 221 (1991).
6Yugo, S., Kimura, T., Kanai, H., and Adachi, Y., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 217.
7Mottish, A. A. and Pehtsson, P. E., Appl. Phys. Lett. 59, 417 (1991).
8Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).
9Stoner, B.R., Ma, G-H.M., Wolter, S.D., and Glass, J.T., Phys. Rev. B 45, 11067 (1992).
10Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Fusser, H-J., Appl. Phys. Lett. 62, 3438 (1993).
11Jiang, X., Schiffmann, K., Westphal, A., and Klages, C-P., Appl. Phys. Lett. 63, 1203 (1993).
12Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C.E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).
13Shih, D. S., Robertson, I.M., and Birnbaum, H. K., Acta Metall. 36, 111 (1988).
14Numakura, H. and Koiwa, M., Acta Metall. 32, 1799 (1984).
15Park, S.S. and Lee, J. Y., J. Appl. Phys. 69, 2618 (1991).
16Muranaka, Y., Yamashita, H., and Miyadera, H., J. Vac. Sci. Technol. A 9, 76 (1991).
17Kim, T-H. and Kobayashi, T., Jpn. J. Appl. Phys. 33, L459 (1994).
18Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., J. Mater. Res. 5, 2305 (1990).
19Kawato, T., and Kondo, K-I., Jpn. J. Appl. Phys. 26, 1429 (1987).
20Konkoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., J. Appl. Phys. 73, 3041 (1993).
21Howard, W. N., Spear, K.E., and Frenklach, M., Appl. Phys. Lett. 63, 2641 (1993).

Related content

Powered by UNSILO

Diamond growth on thin Ti wafers via chemical vapor deposition

  • Qijin Chen (a1) and Zhangda Lin (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.