Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-10T00:00:47.627Z Has data issue: false hasContentIssue false

Diamond growth by hollow cathode arc plasma chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Gou-Tsau Liang
Affiliation:
Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Franklin Chau-Nan Hong*
Affiliation:
Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
*
a)Address all correspondence to this author.hong@mail.ncku.edu.tw
Get access

Abstract

Hollow cathode arc plasma chemical vapor deposition was employed to grow crystalline diamond films using 1.5% to 7% of methane in hydrogen. The growth rate was as high as 3.2 μ/h when using 5% CH4/H2 at a pressure of 15 Torr and a substrate temperature of 1083 K. However, an intermediate layer of several hundred nanometers was observed at the film-substrate interface by cross-section SEM. Raman and XPS characterizations showed that the interfacial layer consisted of sp2 carbon and TaC with Ta vaporized from the hot cathode tube. XRD and XPS results further showed that the deposited diamond films also contained TaC. Ta composition in the film increased with the increase of growth pressure, the reduction of substrate temperature, and the increase of H2 flow in the Ta tube. The diamond films deposited by using CHCl3 as carbon source had Ta concentrations one order of magnitude higher than those using CH4, as shown by XPS results, but the nucleation densities using CHCl3 were always higher than those using CH4.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
2.Wei, J. and Tzeng, Y., J. Cryst. Growth 128, 413 (1988).CrossRefGoogle Scholar
3.Hirabayashi, K. and Matsumoto, S., J. Appl. Phys. 75, 1151 (1994).CrossRefGoogle Scholar
4.Lee, J. C., Hong, B. Y., Messier, R., and Collins, R. W., J. Appl. Phys. 80, 6489 (1996).CrossRefGoogle Scholar
5.Suzuki, K., Sawabe, A., Yasuda, H., and Inuzuka, T., Appl. Phys. Lett. 50, 728 (1987).CrossRefGoogle Scholar
6.Nakao, S., Noda, M., Watatani, H., and Maruno, S., Jpn. J. Appl. Phys. 30, L1195 (1991).CrossRefGoogle Scholar
7.Cappelli, M. A and Loh, M. H., Diamond Relat. Mater. 3, 417 (1994).CrossRefGoogle Scholar
8.Reeve, S. W., Weimer, W. A., and Dandy, D. S., J. Mater. Res. 11, 694 (1996).CrossRefGoogle Scholar
9.Matsui, Y., Yuki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).CrossRefGoogle Scholar
10.Koch, H., Friedrich, L. J., Hinkel, V., Ludwig, F, Politt, B., and Schurig, T., J. Vac. Sci. Technol. A 9, 2374 (1991).CrossRefGoogle Scholar
11.Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46, 146 (1985).CrossRefGoogle Scholar
12.Nakao, S., Watatani, H., Maruno, S., and Noda, M., J. Cryst. Growth 115, 313 (1991).CrossRefGoogle Scholar
13.Hong, F. C., Hsu, C. Y., Chang, M., Liang, G. T., and Wu, J. J., in Advances in New Diamond Science and Technology, edited by Saito, S., Fujimori, N., Fukunaga, O, Kamo, M., Kobashi, K., and Yoshikawa, M. (MY, Tokyo, Japan, 1994), p. 23.Google Scholar
14.Singh, B., Mesker, O. R., Levine, A. W., and Arie, Y., Appl. Phys. Lett. 52, 1658 (1988).CrossRefGoogle Scholar
15.Tzeng, Y., Kung, P. J., and Zee, R., Appl. Phys. Lett. 53, 2326 (1988).CrossRefGoogle Scholar
16.Kung, P. J. and Tzeng, Y., J. Appl. Phys. 66, 4676 (1989).CrossRefGoogle Scholar
17.Stiegler, J., Laufer, S., Mainz, B, Weber, T., and Schaarschmidt, G., Diamond Relat. Mater. 3, 1235 (1994).CrossRefGoogle Scholar
18.Lee, S. S., Minsek, D. W., Vestyck, D. J., and Chen, P., Science 263, 1596 (1994).CrossRefGoogle Scholar
19.Wu, J. J. and Hong, F. C. N., Appl. Phys. Lett. 70, 185 (1997).CrossRefGoogle Scholar
20.Wada, N. and Solin, S. A., Physica B, 105, 353 (1981).CrossRefGoogle Scholar
21.Delcroix, J-L. and Trindade, A. R., Adv. Electron Phys. 35, 87 (1974).CrossRefGoogle Scholar
22.Badzian, A. R and DeVries, R. C., Mater. Res. Bull. 23, 385 (1988).CrossRefGoogle Scholar
23.Celii, F. G and Butler, J. E., Annual Review of Physical Chemistry 42, 643 (1991).CrossRefGoogle Scholar
24.Angus, J. C and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
25.Hong, F. C. N., Liang, G. T., Wu, J. J., Chang, D., and Hsieh, J. C., Appl. Phys. Lett. 63, 3149 (1993).CrossRefGoogle Scholar
26.Hong, F. C. N., Hsieh, J. C., Wu, J. J., Liang, G. T., and Hwang, J. H., Diamond Relat. Mater. 2, 365 (1993).CrossRefGoogle Scholar
27.Hinneberg, H-J., Eck, M., and Schmidt, K., Diamond Relat. Mater. 1, 810 (1992).CrossRefGoogle Scholar